News
Products
Price
Payment
Delivery
Software
Information
Books
criticality
Links
Contacts
|
SCR
-
self-sustaining chain reaction.
Nuclear chain
reaction - single
sequence of
nuclear reactions, each of which
is called a
particle, which appeared as a
reaction product
in the previous step
sequence. |
|
|
An
example of a nuclear chain reaction is a chain reaction
of fission of nuclei of heavy elements, at which the
main number of acts of fission initiated by neutrons,
obtained during the fission of nuclei in the previous
generation. |
|
Information and documents on the
criticality:
Reports
|
LANL |
LA-11627-MS |
Glossary of Nuclear Criticality Terms
|
|
|
LA-12683 |
Forecast of Criticality Experiments
and
Experimental Programs Needed to Support Nuclear Operations
in the United States of America: 1994-1999 |
|
|
LA-13265 |
A Primer for
Criticality Calculations with DANTSYS,
by Robert Busch. |
|
|
LA-13638 |
and References -
A Review of Criticality Accidents,
2000 Revision |
|
|
LA-13638
and References - A Review of Criticality Accidents, 2000
Revision |
0. T.P. McLaughlin, S.P. Monahan, N.L. Pruvost, V.V.
Frolov, B.G. Ryazanov, V.I. Sviridov,
“A
Review of Criticality Accidents: 2000 Revision.”
Los Alamos National Laboratory Report LA-13638 (May 2000).
1. Stratton,
“W. R. A Review of Criticality Accidents.”
Los Alamos Scientific Laboratory Los Alamos, NM., LA-3611,
(1967).
2. Stratton W. R., revised by D. R. Smith.
“A
Review of Criticality Accidents.”
Lawrence Livermore National Laboratory, Livermore, CA,
DOE/NCT-04, (March 1989).
3. Paxton, Hugh C.
“Glossary of Nuclear Criticality
Terms.”
Los Alamos National Laboratory report LA-11627-MS, Los
Alamos, NM, (October 1989).
4. Barbry,
“F. SILENE Reactor: Results of Selected Typical
Experiments.”
Report SRSC n223, CEA Institute de Protectionet de Surete
Nucleaire , Department de Recherches en Securite, Service de
Recherches en Surete et Criticite, Centre d'Etudes de VALDUC
- SRSC 21120 Is-sur-Tille, France, (September 1994).
5. Lecorche, P., and R. L. Seale.
“Review of the Experiments Performed to Determine the
Radiological Consequences of a Criticality Accident.”
Y-12 Plant, Oak Ridge, TN., Y-CDC-12, (1973).
6. Dunenfeld, M.S., and R. K. Stitt. “Summary Review of
the Kinetics Experiments on Water Boilers.”NAA-SR-7087,
(1963). This report is proprietary information of North
American Aviation Co.
7.
“Accidental Radiation Excursion at the Y-12 Plant June 16,
1958.”
Union Carbide Nuclear Company, Y-12 Plant, Oak Ridge, TN.,
Y-1234, (1958).
8. Callihan, D., and J. T. Thomas.
“Accidental Radiation Excursion at the Oak Ridge Y-12
Plant—I, Description and Physics of the Accident.”
Health Phys., 1, 363-372, (1959).
9.
“Oak Ridge Y-12 Accidental Excursion, June 16, 1958.”
Nucleonics, 16, Nov., pp. 138-140, 200-203, (1958).
10. Hurst, G. S., R. S. Ritchie, and R. L. Emerson.
“Accidental Radiation Excursion at the Oak Ridge Y-12 Plant,
Part III, Determination of Doses.”
Health Physics, 2, p. 121 (1959).
11. Paxton, H. C., R. D. Baker, W. T. Maraman, and R.
Reider.
“Nuclear-Critical Accident at the Los Alamos Scientific
Laboratory on December 30, 1958.”
Los Alamos Scientific Laboratory, Los Alamos, NM, LAMS-2293
(1959).
12. Paxton, H. C., R. D. Baker, W. J. Maraman, and R.
Reider.
“Los Alamos Criticality Accident, December 30, 1958.”
Nucleonics, 17(4), pp. 107-108, 151 (1959).
13. Ginkel, W. L., C. W. Bills, A. O. Dodd, K. K. Kennedy,
and F. H. Tingey.
“Nuclear Incident at the Idaho Chemical Processing Plant on
October 16, 1959.”
Phillips Petroleum Co., Atomic Energy Div., Idaho Falls, ID,
IDO-10035 (1960).
14. Paulus, P. C., A. O. Dodd, K. K. Kennedy, F. H. Tingey,
and F. M. Warzel.
“Nuclear Incident at the Idaho Chemical Processing Plant on
January 25, 1961.”
Phillips Petroleum Company, Atomic Energy Div., Idaho Falls,
ID, IDO-10036 (1961).
15. Latchum J. W., F. C. Haas, W. M. Hawkins, and F. M.
Warzel.
“Nuclear Incident at the Idaho
Chemical Processing Plant of January 25, 1961.”
La-54-61A, Phillips Petroleum Co., (4 April 1961). 61.
La-54-61A, Phillips Petroleum Co., (4 April 1961).
16. Olsen A. R., R. L. Hooper, V. O. Uotinen, and C. L.
Brown.
“Empirical Model to Estimate Energy Release from Accidental
Criticality.”
Trans. Am. Nuc. Soc., 19, pp. 189-191, (October 1974).
17. Hetrick, D. L.
Letter to Thomas P. McLaughlin, (14 July 1999).
18. Callihan, D.
“Accidental Nuclear Excursion in Recuplex Operation at
Hanford in April 1962.”
Nucl. Safety, 4(4), pp. 136-144, (1963).
19. Clayton, E. D.
“Further Considerations of Criticality in Recuplex and
Possible Shutdown Mechanism.”
Hanford Atomic Products Operation, Hanford, Wash. HW-77780
(1963).
20. Zangar, C. N.
“Summary Report of Accidental Nuclear Excursion Recuplex
Operation 234-5 Facility.”
HW74723, Richland Operations Office, AEC, TID-18431 (1962).
21. Investigation Committee.
“Final Report of Accidental Nuclear Excursion Recuplex
Operation 234-5 Facility.”
Hanford Operations Office, H W-74723, (August, 1962).
22. Clayton, E. D.
“The Hanford Pulser Accident.”
Transactions of the American Nuclear Society, 46, pp.
463-464, (June 1984).
23. Nakache, F. R., and M. M. Shapiro.
“The Nuclear Aspects of the Accidental Criticality at Wood
River Junction, Rhode Island, July 24, 19 64.”
Supplemental Report, United Nuclear Corp., New Haven, Conn.,
Fuels Div., TID-21995 (1964).
24. Kouts, H., et al.
“Report of the AEC Technical Review Committee, (Nov. 6,
1964).”
25. Daniels, J. T., H. Howells, and T. G. Hughes.
“Criticality Incident-Aug 24, 1970, Windscale Works.”
Trans. Am. Nuc. Sec., 14, pp. 35-3 6 (1971).
26. Evans, M. C.
“A
Review of Criticality Accidents Within the European
Community.”
Trans. Am. Nuc. Sec., 46, pp. 462-463 (1984).
27. Evans, M.C.,
“A
Review of Criticality Accidents Within the European
Community.”
Notes from oral presentation at the Summer Meeting of the
American Nuclear Society, New Orleans, (June 1984).
28.
“Recovery of ICPP from Criticality Event of October 17, 1978
- Part II (Support and Safety Justification of the Specific
Approach to Emptying H-100).”
Allied Chemical, ACI-366, (January 1979).
29. Casto, W. R. (ed.).
“ICPP Criticality Event of October 17, 1978.”
Nuclear Safety, vol. 21, No. 5, (October 1980).
30.
“Report of the Accident Investigation Committee on a
Critical Accident in Uranium Fuel Fabrication Plant.”
The Nuclear Saf ety Commission, Japan (December 42, 1999).
31. “Report No. 3 in the 5th Meeting in 2000 of the
Nuclear Safety Commission: 'Scope of Radiation Dose to
Persons by the Critical Accident in JCO Co., Ltd. Tokai Site
and Its Follow-up.'” Nuclear Safety Bureau of Science and
Technology Agency, Japan, (January 2000).
32. McCoy, F. R. III, T.P. McLaughlin, and L.C. Lewis.
“U.S. Department of Energy Trip Report of Visit to Tokyo and
Tokai-Mura, Japan on October 18-19, 1999 for Information
Exchange with Government of Japan Concerning the September
30, 1999 Tokai-Mura Criticality Accident.”
U. S. Department of Energy.
33.
“NEA Nuclear Science Committee. International Handbook of
Evaluated Criticality Safety Benchmark Experiments.
NEA/NSC/DOC-(95)-03, (September 1998).
34. Paxton, H. C., and N. L. Pruvost.
“Critical Dimensions of Systems Containing
235U, 239Pu,
and 233U, 1986 Revision.”
LA-10860-MS, Fig. 4, p. 14, (July 1987).
35. Taylor, E. F., and J. A. Wheeler.
“Spacetime Physics.”
W. H. Freeman and Co.,p. 60, San Francisco, p. 60, (1966).
36. Callihan, D., W. Ozeroff, H. Paxton, and C. Schuske.
“Nuclear Safety Guide.”
U. S. Atomic Energy Commission report TID-7016, (1957).
37. Hayes, D. F.
“A
Summary of Accidents and Incidents Involving Radiation in
Atomic Energy Activities, June 1945 through December 1955.”
U. S. Atomic Energy Commission TID-5360, (1956).
38. King, L. D. P.
“Design and Description of Water Boiler Reactors.”
Proc. Intern. Conf. Peaceful Uses At. Energy, Geneva 1955,
vol. 2, p p. 372-391, (1955).
39. Leonard, Jr., B. R.
“A
Study of the Radiation Burst in the Hanford Homogeneous
Reactor.”
Hanford Works, Richland, WA, HW-24327, (1952).
40. Thomas, J. T., and A. D. Callihan.
“Radiation Excursions at the ORNL Critical Experiments
Laboratory. I. May 26, 1954. II. February 1, 1956.”Oak
Ridge National Laboratory, Oak Ridge, TN, ORNL-2452, (1958).
41. Callihan, D.
“Excursion at the Oak Ridge Critical Experiments Facility,
January 30, 1968.”
Oak Ridge National Laboratory, Oak Ridge, TN, ORNL-TM-2207,
(1968).
42. Paxton, H. C.
“Critical-Assembly Booby Traps.”
Nucleonics 16, Mar., pp. 80-81, (1958).
43. Paine, Jr., R. W., R. S. Dike, J. D. Orndoff, and D.
P. Wood.
“A
Study of an Accidental Radiation Burst.”
Los Alamos Scientific Laboratory , Los Alamos, NM, LA-1289,
(1951).
44. Paxton, H. C.
“Booby Traps.”
Los Alamos Scientific Laboratory, Los Alamos, NM, AECD-4240,
(1957).
45. Mallary, E. C., G. E. Hansen, G. A. Linenberger, and
D. P. Wood.
“Neutron Burst from a Cylindrical Untamped Oy (Enriched U)
Assembly.”
Los Alamos Scientific Laboratory, Los Alamos, NM, LA-1477,
(1952).
46. Peterson, R. E., and G. A. Newby.
“An Unreflected U-235 Critical Assembly.”
Nucl. Sci. Eng. 1, 112-125, (1956).
47. Wimett, T. F., L. B. Engle, G. A. Graves, G. R. Keepin,
Jr., and J. D. Orndoff.
“Time Behavior of Godiva Through Prompt Critical.”
Los A lamos Scientific Laboratory, Los Alamos, NM, LA-2029,
(1956).
48. Paxton, H. C.
“Godiva, Topsy, Jezebel-Critical Assemblies at Los Alamos.”
Nucleonics 13, Oct., 48-50, (1955).
49. A. M. Voinov, V. P. Egorov, A. E. Zapolsky, et al.
“Facility for neutronics testing of simple critical
assemblies.” VANT, section Nuclear Reactor Physics, 2, pp.
21-29, (1992).
50. Paxton, H. C.
“Godiva Wrecked at Los Alamos.”
Nucleonics 15, Apr., p. 104, (1957).
51. Stratton, W. R., T. H. Colvin, and R. B. Lazarus.
“Analyses of Prompt Excursions in Simple Systems and
Idealized Fast Reactors.”
In Proc. UN Intern. Conf. Peaceful Uses At. Energy, 2nd,
Geneva, 1958 (United Nations, Geneva), vol. 12, pp. 196-206,
(1958).
52. Wimett, T. F., and J. D. Orndoff.
“Applications of Godiva II Neutron Pulses.”
In Proc. UN Intern. Conf. Peaceful Uses At. Energy, 2nd,
Geneva, 1958 (United Nations, Geneva), vol. 10, pp. 449-460,
(1958).
53. Callihan, D.,
“Criticality Excursion of November 10, 1961.”
Oak Ridge National Laboratory, Oak Ridge, TN, ORNL-TM-139,
(1962).
54. Kuvshinov M. I., P. F. Cherednic, I. I. Ignatov, et
al. “Experimental research of coupled systems including BIR
pulse reactor and a subcritical assembly.” VANT, Section:
Pulse reactors and simple critical assemblies, 2, pp. 3-15,
(1988).
55. Kathren, R. L., W. C. Day, D. H. Denham, and J. L.
Brown.
“Health Physics Following a Nuclear Excursion: The LRL
Incident of March 26, 1963.”
Lawrence Livermore National Laboratory, Livermore, CA,
UCRL-7345, (1963).
56. “Fast Burst Reactor Facility Operations report Number
2.” White Sands Missile Range, White Sands, NM, (1965). This
reference has been carried over from a previous edition of
the document. At the time of printing it was not possible to
locate a copy of the reference.
57. Teryokhin, V. A., V. D. Perezhogin, and Y. A. Sokolov.
“Criticality Measurements at VNIITF Review.”
In Proc. of the Fifth Internationa l Conference on Nuclear
Criticality Safety, September 17-21, 1995, pp. 4.44-4.47,
(1995).
58. Voloshin, N. P., I. S. Pogrebov, and V. A. Teryokhin.
“RFNC-VNIITF Physical Experimental Division and a Short
Historical Sketch of Cri tical Mass Measurements.”
In Proc. of the Fifth International Conference on Nuclear
Criticality Safety, September 17-21, 1995, pp. P-31- P -36,
(1995).
59. Kazi, A. H., H. G. Dubyoski, and E. W. Dickinson.
“Preoperational Test Experience with the Army Pulse
Radiation Facility Reactor.”
In Proc. of the National Topical Meeting on Fast Burst
Reactors, Albuquerque, NM (U. S. Atomic Energy Commission),
pp. 353-371, (1969).
60. Voloshin, N. P. “Summary of the expert findings about
the causes of the nuclear accident at RFNC-VNIIEF.” Sarov.
Atompressa, 26 (262), (July 1997).
61. Punin, V. T., I. G. Smirnov, and S. A. Zykov.
“The Accident of the RFNC-VNIIEF Criticality Test Facility.”
Atomnaya energia, 83.2, pp. 154-156, (1997).
62. Khodalev, G. F., E. Yu. Tarasova, A. K. Zhitnik, et
al.
“An exposure dose for the experimentalist during the
criticality accident at R FNC-VNIIEF.”
Atomnaya energia, 85.2, pp. 153-158 (1998).
63. Argonne National Laboratory.
“Controlled Nuclear Chain Reaction: The First 50 Years.”
American Nuclear Society, La Grange Park, IL, pp . 52-54
(1992).
64. Brittan, R. O., R. J. Hasterlik, L. D. Marinelli, and
F. W. Thalgott.
“Technical Review of ZPR-1 Accidental Transient-The Power
Excursi on, Exposures, and Clinical Data.”
Argonne National Laboratory, Argonne, IL, ANL-4971, (1953).
65. Lewis, W. B.
“The Accident to the NRX Reactor on December 12, 1952.”
Atomic Energy of Canada, Ltd., Chalk River Project, Chalk
River, On tario, Canada, DR-32, (1953).
66. Hurst, D. C., and A. G. Ward.
“Canadian Research Reactors.”
In Progress in Nuclear Energy, Series II, Reactors, vol. I.
R. A. Charpie, D. J. Hughes, D. J. Littler, and M. Trocheris,
Eds. Pergamon Press, London, pp. 1-48, (1956).
67. Henderson, W. J., A.C. Johnson, and P. R. Tunnicliffe.
An Investigation of Some of the Circumstances Pertinent to
the Accident to the NRX Reactor of December 12, 1952. Atomic
Energy of Canada Limited, Chalk River Ontario, NEI-26,
(March 31, 1953).
68. Dietrich, J. R.
“Experimental Determinations of the Self-Limitation of Power
During Reactivity Transients in a Subcooled, Water-Moderated
Reactor.”
Argonne National Laboratory, Argonne, IL, ANL-5323, (1954).
69.
“Reactors.”
Nucleonics, 13, Sept., 40-45, (1955).
70. Dietrich, J. R.
“Experimental Determinations of the Self-Regulation and
Safety of Operating Water-Moderated Reactors.”
In Proc. Intern . Conf. Peaceful Uses At. Energy, Geneva,
1955, United Nations, New York, vol. 13, pp. 88-101, (1956).
71. Dietrich, J. R., and D. C. Layman.
“Transient and Steady State Characteristics of a Boiling
Reactor. The Borax Experiments, 1953.”
Argonne National Laboratory, Argonne, IL, AECD-3840, (1954).
72. Thompson, T. J., and J. G. Beckerley, Eds.
“The Technology of Nuclear Reactor Safety,”
vol. 1 (The M.I.T. Press, Cambridge, MA, 1964).
73. Lushbaugh, C. C.
“Reflections on Some Recent Progress in Human Radiobiology.”
In Advances in Radiation Biology, vol. 3, L. G. Augenste in,
R. Mason, and M. Zelle, Eds. (Academic Press Inc., pp
277-314., (1969).
74. Tardiff, A. N.
“Some Aspects of the WTR and SL-1 Accidents.”
In Proc. Symp. Reactor Safety and Hazards Evaluation
Techniques. vol. 1, International Atomic Energy Agency,
Vienna, pp. 43-88, (1962).
75. Nyer, W. E., G. O. Bright, and R. J. McWhorter.
“Reactor Excursion Behavior.”
In Proc. UN Intern. Conf. Peaceful Uses At. Energy, 3rd,
Geneva, 1964, vol. 13, United Nations, Geneva, pp. 13-25,
(1965).
76. Miller, R. W., A. Sola, and R. K. McCardell,
“Report of the SPERT-1 Destructive Test Program on an
Aluminum, Plate-type, Water-Modera ted Reactor,”
Phillips Petroleum Company, IDO-16883, (June 1964).
77. Parfanovich, D. M.
“Summary of Two Criticality Accidents at the Russian
Research Center”
Kurchatov Institute. INEEL/EXT-98-00409, Idaho National
Engineering and Environmental Laboratory, J. Blair Briggs,
ed., (August 1998).
78.
“Water-Moderated Hexagonally Pitched Lattices of U(9O%)O2
+ Cu Fuel Rods with GD or SM Rods.”
HEU-COMP-THERM-004, International Handbook of Evaluated
Criticality Safety Benchmark Experiments, NEA/N S
C/DOC(95)03/II, 1996 Version or Later.
79.
US
NRC Information Notice No. 83-66,
Supplement 1: Fatality at Argentine Critical Facility, (May
25, 1984).
80. Frisch, O. R.
“Controlled Production of an Explosive Nuclear Chain
Reaction.”
Los Alamos Scientific Laboratory, Los Alamos, NM, LA-397,
(1945).
81. De Hoffman, F., B. T. Feld, and P. R. Stein.
“Delayed Neutrons from 235U
After Short Irradiation.”
Phys. Rev., 74, (10) 1330-1337, (19 48).
82. Brittan, R. O.
“Analysis of the EBR-1 Core Meltdown.”
In Proc. UN Intern. Conf. Peaceful Uses At. Energy, 2nd
Geneva, 1958, vol. 12, United Nations, Geneva, pp. 267-272,
(1958).
83. Kittel, J. H., M. Novick, and R. F. Buchanan.
“The EBR-1 Meltdown-Physical and Metallurgical Changes in
the Core.”
Argonne National Labo ratory, Argonne, IL, ANL-5731, (1957).
84.
“Summary Report of HTRE No. 3 Nuclear Excursion.”
General Electric Co., Aircraft Nuclear Propulsion Dept.,
Cincinnati, OH, APEX-509, (19 59).
85. Remley, M. E., J. W. Flora, D. L. Hetrick, D. R.
Muller, E. L. Gardner, R. E. Wimmer, R. K. Stitt, and D. P.
Gamble.
“Experimental Studies on the Kinetic Behavior of Water
Boiler Type Reactors.”
In Proc. UN Intern. Conf. Peaceful Uses At. Energy, 2nd,
Geneva 1958, vol. 11 , United Nations, Geneva, pp. 447-456
(1958).
86. Stitt, R. K.
“A
Summary of Experimental Results of the Spherical Core
Investigations in the Kewb Program.”
Nucl. Sci. Eng., 2 (1), Su ppl., 212-213, (1959).
87. Hetrick, D. L., J. W. Flora, E.L. Garner, et.al.
“Preliminary Results on the Kinetic Behavior of Water Boiler
Reactors.”
Atomics International, North American Aviation, NAA-SR-1896,
(April 15, 1987).
88. Malenfant, R. E., H. M. Forehand, and J. J. Koelling.
“Sheba: A Solution Critical Assembly.”
Trans. Amer. Nucl. Sec. 35 p. 279, (1980) .
89. Forbes, S. G., F. L. Bentzen, P. French, J. E. Grund,
I. C. Haire, W. E. Nyer, and R. F. Walker. “Analysis of
Self-Shutdown Behavior in the Spert-1 Reactor.” Phillips
Petroleum Company, Atomic Energy Div., Idaho Falls, Idaho,
IDO-16528, (1959). This reference has been carried over from
a previous edition of the document. At the time of printing
it was not possible to locate a copy of the document.
90. Nyer, W. E., and S. G. Forbes.
“SPERT-1 Reactor Safety Studies.”
In Proc. UN Intern. Conf. Peaceful Uses At. Energy, 2nd,
Geneva, 1958 , vol. 11, United Nations, Geneva, pp. 470-480,
(1958).
91. Schroeder, F., S. G. Forbes, W. E. Nyer, F. L. Bentzen,
and G. O. Bright.
“Experimental Study of Transient Behavior in a Subcooled,
Water-Moderated Reactor.”
Nucl. Sci. Eng. 2, 96-115, (1957).
92. Stone, R. S., H. P. Sleeper, Jr., R. H. Stahl, and G.
West.
“Transient Behavior of TRIGA, a Zirconium-Hydride,
Water-Moderated Reactor .”
Nucl. Sci. Eng., 6, 255-259, (1959).
93. Koutz, S. L., T. Taylor, A. McReynolds, F. Dyson, R.
S. Stolne, H. P. Sleeper, Jr., and R. B. Duffield.
“Design of a 10-kw Reactor for Isotope Production, Research
and Training Purposes.”
In Proc. UN Intern. Conf. Peaceful Uses At. Energy, 2nd,
Geneva, 1958, vol. 10, United Nations, Geneva, pp. 282-286,
(1958).
94. Knief, R. A.,
“Nuclear Criticality Safety: Theory and Practice.”
American Nuclear Society, LaGrange Park, IL, p. 11, (1985).
95. Hansen, G. E.
“Burst Characteristics Associated with the Slow Assembly of
Fissionable Materials.”
Los Alamos Scientific Laboratory, Los Alamos, NM, LA-1441,
(1952).
96. Fuchs, K.
“Efficiency for Very Slow Assembly.”
Los Alamos Scientific Laboratory, Los Alamos, NM, LA-596,
(1946).
97. Hansen, G. E.
“Assembly of Fissionable Material in the Presence of a Weak
Neutron Source.”
Nucl. Sci. Eng., 8, 709-719, (1960).”
98. Keepin, G. R.
“Physics of Nuclear Kinetics.”
Addison Wesley Pub. Co., Reading, MA, p. 287, (1965).
99. Keepin, G. R, and C. W. Cox.
“General Solution of the Reactor Kinetics Equations.”
Nucl. Sci. Eng., 8, 670-690, (1960).
100. Gamble, D. P.
“A
Proposed Model of Bubble Growth During Fast Transients in
the Kewb Reactor.”
Nucl. Sci. Eng., 2 (1), Suppl., 213-214 , (1959).
101. Wilson, Robert E., and Jensen, William D.
“Reflections on the 1978 ICPP Criticality Accident.”
Proceedings of the Sixth International Conference on Nuclear
Criticality Safety, Vol. IV, 1540-1544,(1999).
|
|
|
LA-13638-TR |
Russian Translation of LA-13638,
'A Review of Criticality Accidents, 2000 Revision.'
|
|
|
LA-14098 |
Modern Fission Theory for Criticality,
by J Eric Lynn |
|
|
LA-UR-04-6514 |
The
Heritage and Usage
of the Words Fissionable and Fissile in
Criticality,' by N. L. Pruvost, J Eric Lynn, and Charles D.
Harmon II. |
|
|
LA-UR-05-3247 |
'A Technically Useful History of the
Critical Mass Laboratory at Rocky Flats.'
by Robert E. Rothe. |
|
|
LA-14244-M |
Hand Calculation Methods for Criticality Safety – A Primer,
by Douglas G. Bowen and Robert D. Busch. |
|
Other |
|
The
Criticality Accident in Sarov.
Issued 19 March 2001 by the IAEA |
Technical
Documents
|
LANL |
LA-10860 and Reference Set:
Critical
Dimensions of Systems Containing 235U,
239Pu, and
233U. |
0. H.C. Paxton and N. L. Pruvost, “Critical
Dimensions of Systems Containing 235U, 239Pu,
and 233U, 1986 Revision,”
Los Alamos National Laboratory report LA-10860-MS (July
1987).
1. H. C. Paxton, J. T. Thomas, Dixon Callihan, and E. B.
Johnson, “Critical
Dimensions of Systems Containing U235, Pu239,
and U233,”
Los Alamos Scientific Laboratory and Oak Ridge National
Laboratory report TID-7028 (June 1964).
2. J. T. Thomas, Ed., “Nuclear
Safety Guide TID-7016,”
U. S. Nuclear Regulatory Commission report NUREG/CR-0095 (ORNL/NUREG/CSD-6)
(June 1978).
3. “Nuclear Criticality Safety in Operations with
Fissionable Materials Outside Reactors,” ANSI/ANS-8.1-1983
(Revision of ANSI/N16.1-1975) (American National Standards
Institute, Inc., New York, 1983).
4. H. K. Clark, “Subcritical
Limits for Plutonium Systems,”
Nucl. Sci. Eng. 79, 65-84 (1981).
5. H. K. Clark, “Subcritical
Limits for Uranium-235 Systems,”
Nucl. Sci. Eng. 81, 351-378 (1982).
6. H. K. Clark, “Subcritical
Limits for Uranium-233 Systems,”
Nucl. Sci. Eng. 81, 379-395 (1982).
7. H. K. Clark, “Handbook
of Nuclear Safety,”
Savannah River Laboratory report DP-532 (January 1961). F.
Abbey, “Manual
of Criticality Data, Parts 1,
2,
3,”
AHSB(s) Handbook 5, UKAEA Health and Safety Branch (1967). “Guide
de Criticite, Parts I, II,
III,” (in French)
CEA-R3114, Commissariat a l’Energie Atomique, Saclay (1967).
B. G. Dubovskiy et al., “Critical
Parameters of Fissionable Materials Systems and Nuclear
Safety (A Handbook),”
Russian Translation JPRS:42,322, Clearing House for Federal
Scientific and Technical Information (1967). R. D. Carter,
G. R. Kiel, and K. R. Ridgway, “Criticality
Handbook, Vols. I,
II,
III,”
Atlantic Richfield Hanford Co. report ARH-600 (1968).
8. H. F. Henry, A. J. Mallett, C. E. Newlon, and W. A.
Pryor, “Criticality
Data and Nuclear Safety Guide Applicable to the Oak Ridge
Gaseous Diffusion Plant,”
Union Carbide Nuclear Company, K-25 Plant report K-1019 (5th
Rev.) (May 1959). E. D. Clayton, “Nuclear
Safety in Chemical and Metallurgical Processing of Plutonium,”
Hanford Atomic Products report HW-68929 (April 1961).
9. D. Callihan, “Experiments
for Criticality Control,”
in Criticality Control in Chemical and Metallurgical
Plant, Karlsruhe Symposium, 1961 (Organisation for
Economic Cooperation and Development, European Nuclear
Energy Agency, Paris, 1961), pp. 589-614.
10. G. E. Hansen and W. H. Roach, “Six
and Sixteen Group Cross Sections for Fast and Intermediate
Critical Assemblies,”
Los Alamos Scientific Laboratory report LAMS-2543 (November
1961).
11. B. G. Carlson, C. Lee, and W. Worlton, “The
DSN and TDC Neutron Transport Codes,”
Los Alamos Scientific Laboratory reports LAMS-2346 and
LAMS-2346, Appendix I (October 1959).
12. R. D. O’Dell, F. W. Brinkley, Jr., and D. R. Marr, “User’s
Manual for ONEDANT: A Code Package for One-Dimensional,
Diffusion-Accelerated, Neutral-Particle Transport,”
Los Alamos National Laboratory report LA-9184-M (February
1982).
13. R. E. Alcouffe, F. W. Brinkley, D. R. Marr, and R. D.
O’Dell, “User’s
Guide for TWODANT: A Code Package for Two-Dimensional,
Diffusion-Accelerated, Neutral-Particle Transport,”
Los Alamos National Laboratory report LA-10049-M, Rev. 1
(October 1984).
14. W. R. Stratton, “Criticality
Data and Factors Affecting Criticality of Single Homogeneous
Units,” Los Alamos
Scientific Laboratory report LA-3612 (September 1967).
15. J. F. Briesmeister, Ed., “MCNP-A
General Monte Carlo Code for Neutron and Photon Transport,
Version 3A,” Los
Alamos National Laboratory report LA-7396-M, Rev. 2, Manual
(September 1986).
16. H. C. Paxton, “Fast
Critical Experiments,”
in Progress in Nuclear Energy (Pergamon Press, Ltd.,
1981), Vol. 7, pp. 151-174.
17. Roy Reider, “An
Early History of Criticality Safety,”
Los Alamos Scientific Laboratory report LA-4671 (May 1971).
18. Los Alamos Scientific Laboratory of the University of
California, “An
Enriched Homogeneous Nuclear Reactor,”
Rev. Sci. Inst. 22, 489-499 (1951); also L. D. P.
King, “Water
Boilers,” Los Alamos
Scientific Laboratory report LA-1034, Chapter 4 (December
1947).
19. H. D. Smyth,
Atomic Energy for Military Purposes
(Princeton University Press, Princeton, New Jersey, 1945),
pp. 98, 143.
20. H. C. Paxton, “Los
Alamos Critical Mass Data,”
Los Alamos Scientific Laboratory report LA-3067-MS, Rev.
(December 1975).
21. A. H. Snell, “Critical
Experiments on Fluorinated and Hydrogenated Mixtures
Containing Enriched Uranium,”
Monsanto Clinton Laboratories report MonP-48 (November
1945).
22. C. K. Beck, A. D. Callihan, and R. L. Murray, “Critical
Mass Studies, Part I,”
Carbide and Carbon Chemicals Corporation report A-4716 (June
1947).
23. C. K. Beck, A. D. Callihan, and R. L. Murray, “Critical
Mass Studies, Part II,”
Carbide and Carbon Chemicals Corporation report K-126
(January 1948).
24. R. Caizergues, E. Deilgat, P. Lécorché, L. Maubert,
and H. Revol, “Criticality
of Liquid Mixtures of Highly 235U-Enriched
Uranium Hexafluoride and Hydrofluoric Acid,”
(translation) Union Carbide Corporation report Y-CDC-9 (May
1971).
25. W. R. Stratton, “A
Review of Criticality Accidents,”
Los Alamos Scientific Laboratory report. LA-3611 (1967).
26. F. E. Kruesi, J. O. Erkman, and D. D. Lanning, “Critical
Mass Studies of Plutonium Solutions,”
Hanford Atomic Products Operation report HW-24514 (Del.)
(May 1952).
27. R. C. Lloyd, E. D. Clayton, and W. A. Reardon, “Operating
Experience in the Hanford Plutonium Critical Mass Facility,”
Trans. Am. Nucl. Soc. 5, 76, 77 (1962).
28. J. G. Walford and A. F. Thomas, “The
Equipment and Methods Used in British Criticality
Laboratories,” in
Criticality Control in Chemical and Metallurgical Plant,
Karlsruhe Symposium, 1961 (Organisation for Economic
Cooperation and Development, European Nuclear Energy Agency,
Paris, 1961), pp. 553-588.
29. J. Carothers, “Hazards
Summary Report for the LRL Critical Facility,”
Lawrence Radiation Laboratory report UCRL-6220 (March 1960).
30. P. R. Lécorché, “Critical
Mass Laboratory Program in France,”
Trans. Am. Nucl. Soc. 16, 158, 159 (1973).
31. C. L. Schuske, “Experimental
Programs at the Dow Rocky Flats Nuclear Safety Laboratory,”
Trans. Am. Nucl. Soc. 16, 157, 158 (1973).
32. C. K. Beck, A. D. Callihan, J. W. Morfitt, and R. L.
Murray, “Critical
Mass Studies, Part III,”
Carbide and Carbon Chemicals Corporation report K-343 (April
1949).
33. J. K. Fox, L. W. Gilley, and D. Callihan, “Critical
Mass Studies, Part IX. Aqueous U235 Solutions,”
Oak Ridge National Laboratory report ORNL-2367 (March 1958).
34. J. K. Fox, L. W. Gilley, and J. H. Marable, “Critical
Parameters of a Proton-Moderated and Proton-Reflected Slab
of U235,”
Nucl. Sci. Eng. 3, 694-697 (1958).
35. J. T. Mihalczo and J. J. Lynn, “Neutron
Multiplication Experiments with Enriched Uranium Metal in
Slab Geometry,” Oak
Ridge National Laboratory report ORNL-CF-61-4-33 (April
1961).
36. J. T. Mihalczo, “Graphite
and Polyethylene Reflected Uranium Metal Cylinders and
Annuli,” Union
Carbide Corporation, Nuclear Division report Y-DR-81 (April
1972).
37. G. E. Hansen, H. C. Paxton, and D. P. Wood, “Critical
Plutonium and Enriched-Uranium-Metal Cylinders of Extreme
Shape,” Nucl. Sci.
Eng. 8, 570-577 (1960).
38. E. C. Mallary, “Oralloy
Cylindrical Shape Factor and Critical Mass Measurements in
Graphite, Paraffin, and Water Tampers,”
Los Alamos Scientific Laboratory report LA-1305 (October
1951).
39. G. E. Hansen, D. P. Wood, and B. Pena, “Reflector
Savings of Moderating Materials on Large-Diameter U(93.2)
Slabs,” Los Alamos
Scientific Laboratory report LAMS-2744 (October 1962).
40. J. K. Fox, L. W. Gilley, and E. R. Rohrer, “Critical
Mass Studies, Part VIII. Aqueous Solutions of U233,”
Oak Ridge National Laboratory report ORNL-2143 (September
1959).
41. F. A. Kloverstrom, “Spherical
and Cylindrical Plutonium Critical Masses,”
University of California Radiation Laboratory report
UCRL-4957 (September 1957).
42. C. L. Schuske, M. G. Arthur, and D. F. Smith, “Criticality
Measurements on Plutonium Metal Preliminary to the Design of
a Melting Crucible,”
Dow Chemical Co., Rocky Flats Plant report RFP-63 (June
1956).
43. R. C. Lane, “Measurements
of the Critical Parameters of Under-Moderated
Uranium-Hydrogen Mixtures at Intermediate Enrichment,”
in Proceedings of the Symposium Criticality Control of
Fissile Materials, Stockholm, 1-5 November 1965
(International Atomic Energy Agency, Vienna, 1966) pp.
177-191.
44. A. D. Callihan, D. F. Cronin, J. K. Fox, and J. W.
Morfitt, “Critical
Mass Studies, Part V,”
Carbide and Carbon Chemicals Corp., K-25 Plant report K-643
(June 1950).
45. G. A. Linenberger, J. D. Orndoff, and H. C. Paxton, “Enriched-Uranium
Hydride Critical Assemblies,”
Nucl. Sci. Eng. 7, 44-57 (1960).
46. L. E. Hansen and E. D. Clayton, “Criticality
of Plutonium Compounds in the Under-Moderated Range, H/Pu ≤
20,” Nucl. Appl.
3, 481-487 (1967).
47. J. S. Johnson and K. A. Kraus, “Density
and Refractive Index of Uranyl Fluoride Solutions,”
J. Am. Chem. Soc. 75, 4594-4595 (1953).
48. J. T. Thomas, J. K. Fox, and Dixon Callihan, “A
Direct Comparison of Some Nuclear Properties of U-233 and
U-235,” Nucl. Sci.
Eng. 1, 20-32 (1956).
49. J. T. Thomas, “Parameters
for Two Group Analysis of Critical Experiments with Water
Reflected Spheres Of UO2F2 Aqueous
Solutions,” Oak
Ridge National Laboratory report ORNL-CF-56-8-201 (August
1956).
50. J. K. Fox, L. W. Gilley, R. Gwin, and J. T. Thomas, “Critical
Parameters of Uranium Solutions in Simple Geometry,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1958,” Oak Ridge National
Laboratory report ORNL-2609 (October 1958), p.42.
51. R. Gwin and D. W. Magnuson, “The
Measurement of Eta and Other Nuclear Properties of U233
and U235 in Critical Aqueous Solutions,”
Nucl. Sci. Eng. 12, 364-380 (1962).
52. R. H. Masterson, J. D. White, and T. J. Powell, “The
Limiting Critical Concentrations for Pu239 and U235 in
Aqueous Solutions,”
Hanford Atomic Products Operation report HW-77089 (March
1963).
53. R. E. Peterson and G. A. Newby, “An
Unreflected U-235 Critical Assembly,”
Nucl. Sci. Eng.1, 112-125 (1956).
54. C. C. Byers, J. J. Koelling, G. E. Hansen, D. R.
Smith, and H. R. Dyer, “Critical
Measurements of a Water-Reflected Enriched Uranium Sphere,”
Trans. Am. Nucl. Soc. 27, 412-413 (1977).
55. J. T. Mihalczo and J. J. Lynn, “Critical
Parameters of Bare and Reflected 93.4 wt% U235-Enriched
Uranium Metal Slabs,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1960,” Oak Ridge National
Laboratory report ORNL-3016 (December 1960), pp. 73-76.
56. H. R. Ralston, “Critical
Masses of Spherical Systems of Oralloy Reflected in
Beryllium,”
University of California Radiation Laboratory report
UCRL-4975 (October 1957).
57. R. E. Donaldson and W. K. Brown, “Critical-Mass
Determinations of Lead-Reflected Systems,”
University of California Radiation Laboratory report
UCRL-5255 (June 1958).
58. D. W. Magnuson, “Critical
Experiments with Enriched Uranium Dioxide,”
Union Carbide Corporation, Y-12 Plant report Y-DR-120
(November 1973).
59. J. G. Bruna, J. P. Brunet, R. Caizergues, C. Clouet
d’Orval, and P. Verriere, “Results
of Homogeneous Critical Experiments Carried Out with
239Pu, 235U, and 233U,”
(in French) in Proceedings of the Symposium Criticality
Control of Fissile Materials, Stockholm, 1-5 November 1965
(International Atomic Energy Agency, Vienna, 1966), pp.
235-248.
60. P. Lécorché and R. L. Seale, “A
Review of the Experiments Performed to Determine the
Radiological Consequences of a Criticality Accident,”
Oak Ridge Criticality Data Center report Y-CDC-12 (November
1973).
61. B. G. Dubovskii, A. V. Kamaev, V. V. Orlov, C. M.
Vladykov, V. N. Gurin, F. M. Kuznetsov, V. P. Kochergin, I.
P. Markelov, G. A. Popov, and V. J. Sviridenko, “The
Critical Parameters of Aqueous Solutions Of UO2(NO3)2
and Nuclear Safety,”
in Proceedings of the Third International Conference on
the Peaceful Uses of Atomic Energy, Geneva, 1964 (United
Nations, New York, 1965), Vol. 13, pp. 254-263.
62. D. F. Cronin, “Critical
Mass Studies, Part X, Uranium of Intermediate Enrichment,”
Oak Ridge National Laboratory report ORNL-2968 (October
1960).
63. S. J. Raffety and J. T. Mihalczo, “Homogeneous
Critical Assemblies of 2 and 3% Uranium-235-Enriched Uranium
in Paraffin,”
Nucl. Sci. Eng. 48, 433-443 (1972).
64. J. C. Smith, A. V. Parker, J. G. Walford, and C.
White, “Criticality
of 30% Enriched Uranium Solutions in Cylindrical Geometry,”
Dounreay Experimental Reactor Establishment report
DEG-Memo-663 (March 1960).
65. R. E. Carter, J. C. Hinton, L. D. P. King, and R. E.
Schreiber, “Water
Tamper Measurements,”
Los Alamos Scientific Laboratory report LA-241 (March 1945).
66. E. B. Johnson, “Criticality
of a Sphere of U(4.98)UO2F2 Solution,”
in “Neutron Physics Division Annual Progress Report for
Period Ending May 31, 1966,” Oak Ridge National Laboratory
report ORNL-3973 (September 1966), pp. 14, 15.
67. E. B. Johnson, “Critical
Lattices of U(4.89), Rods in Water and in Aqueous Boron
Solution,” Trans.
Am. Nucl. Soc. 11, 675 (1968).
68. C. G. Chezem and R. G. Steinke, “Low-Enrichment
Uranium-Metal Exponential Experiments,”
Nucl. Sci. Eng. 31, 549,550 (1968).
69. J. J. Neuer, “Critical
Assembly of Uranium Metal at an Average U235
Concentration of 16-1/4%,”
Los Alamos Scientific Laboratory report LA-2085 (January
1957).
70. R. H. White, “Topsy,
A Remotely Controlled Critical Assembly Machine,”
Nucl. Sci. Eng. 1, 53-61 (1956).
71. H. C. Paxton, “Bare
Critical Assemblies of Oralloy at Intermediate
Concentrations of U235,”
Los Alamos Scientific Laboratory report LA-1671 (July 1954).
72. Darrouzet, J. P. Chandat, E. A. Fischer, G. Ingram, J.
E. Sanders, and W. Scholtyssek, “Studies
of Unit k Lattices in Metallic Uranium Assemblies Zebra 8H,
Sneak 8, Ermine and Harmonie,”
in Proc. Int. Symposium on Physics of Fast Reactors,
Tokyo, October 16-19, 1973 (Power Reactor and Nuclear
Fuel Development Corporation, Tokyo), Vol. I, pp. 537-570.
73. E. B. Johnson, “Critical
Parameters of U(1.95) Metal Cylindrical Annuli,”
Trans. Am. Nucl. Soc. 9, 185,186 (1966). E. B.
Johnson, “Criticality
of U(3.85) Rods and Cylindrical Annuli in Water,”
Trans. Am. Nucl. Soc. 13, 379 (1970).
74. E. B. Johnson and L. M. Petrie, “The
Criticality of Large Uranium Metal Units of Low Enrichment
in 235U,”
Oak Ridge National Laboratory report ORNL-6310 (1987).
75. J. C. Hoogterp, “Unreflected
Plexiglas-Graphite-Uranium Critical Measurements,”
Trans. Am. Nucl. Soc. 11, 389,390 (1968).
76. H. Kouts, G. Price, K. Downes, R. Sher, and V. Walsh,
“Exponential
Experiments with Slightly Enriched Uranium Rods in Ordinary
Water,” in
Proceedings of the First International Conference on the
Peaceful Uses of Atomic Energy, Geneva, 1955 (United
Nations, New York, 1956), Vol. 5, pp. 183-202.
77. H. Kouts, R. Sher, J. R. Brown, D. Klein, S. Stein, R.
L. Hellens, H. Arnold, R. M. Ball, and P. W. Davison, “Physics
of Slightly Enriched, Normal Water Lattices (Theory and
Experiment),” in
Proceedings of the Second International Conference on the
Peaceful Uses of Atomic Energy, Geneva, 1957 (United
Nations, New York, 1958), Vol. 12, pp. 446-482.
78. E. B. Johnson, “Criticality
of Uranium of Low Enrichment in Water,”
Trans. Am. Nucl. Soc. 12, 336 (1969).
79. C. R. Richey, R. C. Lloyd, and E. D. Clayton, “Criticality
of Slightly Enriched Uranium in Water-Moderated Lattices,”
Nucl. Sci. Eng. 21, 217-226 (1965).
80. W. B. Rogers, Jr., and F. E. Kinard, “Material
Buckling and Critical Masses of Uranium Rods Containing 3
wt% U235 in H2O,”
Nucl. Sci. Eng. 20, 266-271 (1964).
81. J. C. Manaranche, D. Mangin, L. Maubert, G. Colomb,
and G. Poullot, “Critical
Experiments with Lattices of 4.75 wt% 235U-Enriched
UO2 Rods in Water,”
Nucl. Sci. Eng. 71, 154-163 (1979).
82. J. C. Hoogterp, “Critical
Masses of Oralloy Lattices Immersed in Water,”
Los Alamos Scientific Laboratory report LA-2026 (March
1957).
83. J. K. Fox and L. W. Gilley, “Critical
Experiments with Arrays of ORR and BSR Fuel Elements,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1958,” Oak Ridge National
Laboratory report ORNL-2609 (October 1958), pp. 34-36.
84. E. B. Johnson and R. K. Reedy, Jr., “Critical
Experiments with SPERT-D Fuel Elements,”
Oak Ridge National Laboratory report ORNL-TM-1207 (July
1965).
85. A. Goodwin, Jr., G. H. Bidinger, and C. L. Schuske, “Criticality
Studies of Enriched Uranium Metal in UO2(NO3)2
Solutions,” Dow
Chemical Co., Rocky Flats Plant report RFP-182 (July 1960).
86. C. L. Schuske, M. G. Arthur, and D. F. Smith, “Neutron
Multiplication Measurements on Oralloy Slabs Immersed in
Solutions,” Dow
Chemical Co., Rocky Flats Plant report RFP-66 (August 1956).
87. C. L. Schuske, M. G. Arthur, and D. F. Smith, “Neutron
Multiplication Measurements on Oralloy Slabs Immersed in
Solution, Part II,”
Dow Chemical Co., Rocky Flats Plant report RFP-69 (October
1956).
88. W. A. Reardon and J. D. White, “Calculations
of Criticality Properties of Plutonium Nitrate Systems,”
Hanford Atomic Products Operation report HW-72586 (January
1962), pp. 66-78.
89. C. C. Horton and J. D. McCullen, “Plutonium-Water
Critical Assemblies,”
in Proceedings of the First International Conference on
the Peaceful Uses of Atomic Energy, Geneva, 1955 (United
Nations, New York, 1956), Vol. 5, pp. 156-161.
90. J. Bruna, J. P. Brunet, R. Caizergues, C. Clouet
d’Orval, J. Kremser, J. LeClerc, and P. Verriere, “Criticality
Experiment on a Plutonium Solution,”
(in French) Commissariat a l’Energie Atomique report
CEA-2274, Centre d’Etudes Nucleaires, Saclay (1963).
91. M. F. Ithurralde, J. Kremser, J. LeClerc, C. Lombard,
J. Moreau, and C. Robin, “Interpretation
of Criticality Experiments on Homogeneous Solutions of
Plutonium and Uranium,”
(in French) Commissariat a l’Energie Atomique report
CEA-R-2488 (1964).
92. D. Breton, P. Lécorché, and C. Clouet d’Orval, “Criticality
Studies,” (in
French) in Proceedings of the Third United Nations
International Conference on the Peaceful Uses of Atomic
Energy, Geneva, 1964 (United Nations, New York, 1965),
Vol. 13, pp. 234-242.
93. R. C. Lloyd, C. R. Richey, E. D. Clayton, and D. R.
Skeen, “Criticality
Studies with Plutonium Solutions,”
Nucl. Sci. Eng. 25, 165-173 (1966).
94. R. C. Lloyd, E. D. Clayton, L. E. Hansen, and S. R.
Bierman, “Criticality
of Plutonium Nitrate Solutions in Slab Geometry,”
Nucl. Technol. 18, 225-230 (1973).
95. D. R. Smith and W. U. Geer, “Critical
Mass of a Water-Reflected Plutonium Sphere,”
Nucl. Appl. Technol. 7, 405-408 (1969).
96. R. C. Lloyd, R. A. Libby, and E. D. Clayton, “The
Measurement of Eta and the Limiting Critical Concentration
of 239Pu, in Critical Aqueous Solutions,”
Nucl. Sci. Eng. 82, 325-331 (1982).
97. G. Colomb, D. Mangin, and L. Maubert, “Criticality
of Plutonium Nitrate Solutions (19% 240Pu),”
(in French) Commissariat a l’Energie Atomique report
CEA-N-1898 (September 1976).
98. R. C. Lloyd and E. D. Clayton, “The
Criticality of High Burnup Plutonium,”
Nucl. Sci. Eng. 52, 73-75 (1973).
99. C. R. Richey, J. D. White, E. D. Clayton, and R. C.
Lloyd, “Criticality
of Homogeneous Plutonium Oxide-Plastic Compacts at H:Pu = 15,”
Nucl. Sci. Eng. 23, 150-158 (1965).
100. S. R. Bierman, L. E. Hansen, R. C. Lloyd, and E. D.
Clayton, “Critical
Experiments with Homogeneous PuO2-Polystyrene at
5 H/Pu,” Nucl.
Appl. 6, 23-26 (1969).
101. S. R. Bierman and E. D. Clayton, “Critical
Experiments with Homogeneous PUO2-Polystyrene at
50 H/Pu,” Nucl. Technol.
15, 5-13 (1972).
102. S. R. Bierman and E. D. Clayton, “Critical
Experiments with Unmoderated Plutonium Oxide,”
Nucl. Technol. 11, 185-190 (1971).
103. S. R. Bierman, E. D. Clayton, and L. E. Hansen, “Critical
Experiments with Homogeneous Mixtures of Plutonium and
Uranium Oxides Containing 8, 15, and 30 wt% Plutonium,”
Nucl. Sci. Eng. 50, 115-126 (1973).
104. R. C. Lloyd, S. R. Bierman, and E. D. Clayton, “Criticality
of Plutonium-Uranium Mixtures Containing 5 to 8 wt%
Plutonium,” Nucl. Sci.
Eng. 55, 51-57 (1974).
105. S. R. Bierman and E. D. Clayton, “Critical
Experiments with Low-Moderated Homogeneous Mixtures of
Plutonium and Uranium Oxides Containing 8, 15, and 30 wt%
Plutonium,” Nucl. Sci.
Eng. 61, 370-376 (1976).
106. R. C. Lloyd and E. D. Clayton, “Criticality
of Plutonium-Uranium Nitrate Solutions,”
Nucl. Sci. Eng. 60, 143-146 (1976).
107. R. C. Lane and O. J. E. Perkins, “The
Measurement of the Critical Size of a Homogeneous Mixture of
Plutonium and Natural Uranium Oxides with Polythene,”
United Kingdom Atomic Energy Authority report AWRE 0 32/68,
Aldermaston (July 1968).
108. R. C. Lane and C. Parker, “Measurement
of the Critical Size of Solutions of Plutonium and Natural
Uranium Nitrates with Pu/U = 0.3,”
United Kingdom Ministry of Defense report AWRE 0 58/73,
Aldermaston (December 1973).
109. E. D. Clayton, H. K. Clark, D. W. Magnuson, J. H.
Chalmers, Gordon Walker, N. Ketzlach, Ryohei Kiyose, C. L.
Brown, D. R. Smith, and R. Artigas, “Basis
for Subcritical Limits in Proposed Criticality Safety
Standard for Mixed Oxides,”
Nucl. Technol. 35, 97-111 (1977). E. D. Clayton, H.
K. Clark, Gordon Walker, and R. A. Libby, “Basis
for Extending Limits in ANSI Standard for Mixed Oxides to
Heterogeneous Systems,”
Nucl Technol. 75, 225-229 (November 1986).
110. “Nuclear Criticality Control and Safety of
Plutonium-Uranium Fuel Mixtures Outside Reactors,”
ANSI/ANS-8.12-1987 (American National Standards Institute,
Inc., New York, 1987).
111. V. I. Neeley, R. C. Lloyd, and E. D. Clayton, “Neutron
Multiplication Measurements with Pu-Al Alloy Rods in Light
Water,” Hanford Atomic
Products Operation report HW-70944 (August 1961).
112. S. R. Bierman, B. M. Durst, E. D. Clayton, R. I.
Scherpelz, and H. T. Kerr, “Critical
Experiment with Fast Test Reactor Fuel Pins in Water,”
Nucl. Technol. 44, 141-151 (1979).
113. J. T. Thomas, “Critical
Experiments with Aqueous Solutions Of 235UO2(NO3)2,”
in “Neutron Physics Division Annual Progress Report for
Period Ending May 31, 1968,” Oak Ridge National Laboratory
report ORNL-4280 (October 1968), pp. 53-55.
114. W. E. Converse, R. C. Lloyd, E. D. Clayton, and W. A.
Yuill, “Critical
Experiments Using High-Enriched Uranyl Nitrate with Cadmium
Absorber,” Trans. Am.
Nucl. Soc. 32, 328-330 (1979).
115. E. B. Johnson, “The
Criticality of Heterogeneous Lattices of Experimental
Beryllium Oxide Reactor Fuel Pins in Water and in Aqueous
Solutions Containing Boron and Uranyl Nitrate,”
Oak Ridge National Laboratory report ORNL/ENG-2 (July 1976).
116. V. I. Neeley, J. A. Berberet, and R. H. Masterson, “k∞
of Three Weight Percent U235 Enriched UO3
and UO2(NO3)2 Hydrogenous
Systems,” Hanford Atomic
Products Operation report HW-66882 (September 1961).
117. J. T. Mihalczo and V. I. Neeley, “The
Infinite Neutron Multiplication Constant of Homogeneous
Hydrogen-Moderated 2.0 wt% U235-Enriched Uranium,”
Nucl. Sci. Eng. 13, 6-11 (1962).
118. H. E. Handler, “Measurement
of Multiplication Constant for Slightly Enriched Homogeneous
UO3-Water Mixtures and Minimum Enrichment for
Criticality,” Hanford
Atomic Products Operation report HW-70310 (August 1961).
119. R. C. Lloyd, E. D. Clayton, and L. E. Hansen, “Criticality
of Plutonium Nitrate Solution Containing Soluble Gadolinium,”
Nucl. Sci. Eng. 48, 300-304 (1972).
120. R. C. Lloyd and E. D. Clayton, “Criticality
of Plutonium-Uranium Nitrate Solutions,”
Nucl. Sci. Eng. 60, 143-146 (1976).
121. R. C. Lloyd, S. R. Bierman, and E. D. Clayton, “Criticality
of Plutonium Nitrate Solutions Containing Borated Raschig
Rings,” Nucl. Sci. Eng.
50, 127-134 (1973).
122. S. R. Bierman and E. D. Clayton, “Critical
Experiments to Measure the Neutron Poisoning Effects of
Copper and Copper-Cadmium Plates,”
Nucl. Sci. Eng. 55, 58-66 (1974).
123. S. R. Bierman, B. M. Durst, and E. D. Clayton, “Critical
Experiments Measuring the Reactivity Worths of Materials
Commonly Encountered as Fixed Neutron Absorbers,”
Nucl. Sci. Eng. 65, 41-48 (1978).
124. J. T. Thomas, J. K. Fox, and E. B. Johnson, “Critical
Mass Studies, Part XIII. Borosilicate Glass Raschig Rings in
Aqueous Uranyl Nitrate Solutions,”
Oak Ridge National Laboratory report ORNL-TM-499 (February
1963).
125. G. H. Bidinger, C. L. Schuske, and D. F. Smith, “Nuclear
Safety Experiments on Plutonium and Enriched Uranium
Hydrogen Moderated Assemblies Containing Boron,”
Dow Chemical Co., Rocky Flats Plant report RFP-201 (October
1960).
126. C. L. Schuske and G. H. Bidinger, “Nuclear
Safety Measurements on Systems Containing Boron and Enriched
Uranium,” Dow Chemical Co.,
Rocky Flats Plant report RFP-246 (October 1961).
127. J. K. Fox and L. W. Gilley, “The
Poisoning Effect of Copper Lattices in Aqueous Solutions of
Enriched Uranyl Oxyfluoride,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1959,” Oak Ridge National
Laboratory report ORNL-2842 (November 1959), pp. 73-76
128. L. W. Gilley, D. F. Cronin, and V. G. Harness, “Boron
Poisoning in Critical Slabs,”
in “Physics Division Semiannual Progress Report for Period
Ending March 10, 1954,” Oak Ridge National Laboratory report
ORNL-1715 (July 1954), pp. 12,13.
129. L. W. Gilley and Dixon Callihan, “Nuclear
Safety Tests on a Proposed Ball Mill,”
Oak Ridge National Laboratory report ORNL-CF-54-9-89
(September 1954).
130. J. K. Fox and L. W. Gilley, “Critical
Parameters for 20-in.-diam Stainless Steel Cylinders
Containing Aqueous Solutions of U235 Poisoned
with Pyrex Glass,” in
“Neutron Physics Division Annual Progress Report for Period
Ending September 1, 1959,” Oak Ridge National Laboratory
report ORNL-2842 (November 1959), pp. 78-81.
131. R. C. Lloyd, “Summary
Listing of Subcritical Measurements of Heterogeneous
Water-Uranium Lattices Made at Hanford,”
Hanford Atomic Products Operation report HW-65552 (June
1960).
132. H. Kouts and R. Sher, “Experimental
Studies of Slightly Enriched Uranium, Water-Moderated
Lattices,” Brookhaven
National Laboratory report BNL-486 (September 1957).
133. W. H. Arnold, Jr., “Critical
Masses and Lattice Parameters Of H2O-UO2
Critical Experiments. A Comparison of Theory and Experiment,”
Westinghouse Atomic Power Department report YAEC-152
(November 1959).
134. R. C. Lloyd, B. M. Durst, and E. D. Clayton, “Effect
of Soluble Neutron Absorbers on the Criticality of
Low-Uranium-235-Enriched UO2 Lattices,”
Nucl. Sci. Eng. 71, 164-169 (1979).
135. G. E. Hansen and D. P. Wood, “Precision
Critical Mass Determinations for Oralloy and Plutonium in
Spherical Tuballoy Tampers,”
Los Alamos Scientific Laboratory report LA-1356 (Del.)
(February 1952).
136. G. E. Hansen, H. C. Paxton, and D. P. Wood, “Critical
Masses of Oralloy in Thin Reflectors,”
Los Alamos Scientific Laboratory report LA-2203 (July 1958).
137. D. C. Coonfield, Grover Tuck, H. E. Clark, and B. B.
Ernst, “Critical
Mass Irregularity of Steel-Moderated Enriched Uranium Metal
Assemblies with Composite Steel-Oil Reflectors,”
Nucl. Sci. Eng. 39, 320-328 (1970).
138. J. R. Dominey, R. C. Lane, and A. F. Thomas, “Critical
Mass Measurements with Thin Discs of 45.5% Enriched Uranium,”
United Kingdom Atomic Energy Authority report AWRE
NR/A-1/62, Aldermaston (January 1962).
139. J. J. McEnhill and J. W. Weale, “Integral
Experiments on Fast Systems of Plutonium, Uranium, and
Thorium,” in Proc. of
Conf. on Physics of Fast and Intermediate Reactors, Vienna
(International Atomic Energy Agency, Vienna, 1962), Vol.
I, pp. 253-262.
140. E. A. Plassman and D. P. Wood, “Critical
Reflector Thicknesses for Spherical U233 and Pu239
Systems,” Nucl. Sci.
Eng. 8, 615-620 (1960).
141. G. E. Hansen and H. C. Paxton, “Reevaluated
Critical Specifications of Some Los Alamos Fast-Neutron
Systems,” Los Alamos
Scientific Laboratory report LA-4208 (September 1969).
142. H. R. Ralston, “Critical
Parameters of Spherical Systems of Alpha-Phase Plutonium
Reflected by Beryllium,”
University of California Radiation Laboratory report UCRL-
5349 (September 1958).
143. R. E. Rothe and I. Oh, “Benchmark
Critical Experiments on High-Enriched Uranyl Nitrate
Solution Systems,” Nucl.
Technol. 41, 207-225 (1978).
144. E. B. Johnson and C. E. Newlon, “The
Effect of Steel-Water Reflectors on the Criticality of
Low-Enriched Uranyl Fluoride Solution,”
Trans. Am. Nucl. Soc. 11, 383,384 (1968).
145. L. B. Engle, G. E. Hansen, and H. C. Paxton, “Reactivity
Contributions of Various Materials in Topsy, Godiva, and
Jezebel,” Nucl. Sci.
Eng. 8, 543-569 (1960).
146. D. P. Wood, C. C. Byers, and L. C. Osborn, “Critical
Masses of Cylinders of Plutonium Diluted with Other Metals,”
Nucl. Sci. Eng. 8, 578-587 (1960).
147. A. J. Kirschbaum, “Studies
of Enriched Uranium Graphite Reactor Systems,”
University of California Radiation Laboratory report
UCRL-4983-T (November 1957).
148. J. E. Schwager, F. A. Kloverstrom, and W. S. Gilbert,
“Critical
Measurements on Intermediate-Energy Graphite-U235
Systems,” University of
California Radiation Laboratory report UCRL-5006 (November
1957).
149. H. L. Reynolds, “Critical
Measurements and Calculations for Enriched-Uranium
Graphite-Moderated Systems,”
in Proceedings of the Second International Conference on
the Peaceful Uses of Atomic Energy, Geneva, 1958 (United
Nations, New York, 1958), Vol. 12, pp. 632-642.
150. F. A. Kloverstrom, R. M. R. Deck, and A. J. Reyenga,
“Critical
Measurements on Near-Homogeneous BeO-Moderated,
Enriched-Uranium Fueled Systems,”
Nucl. Sci. Eng. 8, 221-225 (1960).
151. E. L. Zimmerman, “Two
Beryllium-Moderated Critical Assemblies,”
Oak Ridge National Laboratory report ORNL-2201 (October
1958).
152. R. N. Olcott, “Homogeneous
Heavy Water Moderated Critical Assemblies, Part 1,
Experimental,” Nucl. Sci.
Eng. 1, 327-341 (1956).
153. A. Goodwin, Jr., and C. L. Schuske, “Plutonium
Graphite Assemblies,” Dow
Chemical Company Rocky Flats Plant report RFP-158 (August
1959).
154. A. Goodwin, Jr., and C. L. Schuske, “Plutonium
Graphite Assemblies,” Dow
Chemical Co., Rocky Flats Plant report RFP-123 (September
1958).
155. J. K. Fox and L. W. Gilley, “Critical
Parameters for Poisoned Annular Cylinders Containing Aqueous
Solutions of U235,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1958,” Oak Ridge National
Laboratory report ORNL-2609 (October 1958), pp. 31-33.
156. J. E. Tanner and H. M. Forehand, “Critical
Experiments for Large Scale Enriched Uranium Solution
Handling,” in Proc. of
Topical Meeting on Criticality Safety in the Storage of
Fissile Material, September 8-11, 1985, Jackson, Wyoming
(American Nuclear Society report ISBN:89448-119-3, 1985),
pp. 65-79.
157. C. Clouet d’Orval, E. Deilgat, M. Houelle, and P.
Lécorché, “Experimental
Research in France on Criticality Problems,”
(in French) in Proceedings of the Symposium Criticality
Control of Fissile Materials, 5tockholm, 1-5 November 1965
(International Atomic Energy Agency, Vienna, 1966), pp.
193-213.
158. J. T. Mihalczo, “Critical
Experiments and Calculations with Annular Cylinders of
U(93.2) Metal,” in “Neutron
Physics Division Annual Progress Report for Period Ending
August 1, 1963,” Oak Ridge National Laboratory report
ORNL-3499 (October 1963), Vol. 1, pp. 62-63.
159. E. B. Johnson, “The
Nuclear Criticality of Intersecting Cylinders of Aqueous
Uranyl Fluoride Solutions,”
Union Carbide Corp., Y-12 Plant report Y-DR-129 (October
1974).
160. Bruce B. Ernst and C. L. Schuske, “Empirical
Method for Calculating Pipe Intersections Containing Fissile
Solutions,” Dow Chemical
Co., Rocky Flats Plant report RFP-1197 (September 1968).
161. C. E. Newlon, “The
Uses of Criticality Codes in Nuclear Safety Considerations
of the Oak Ridge Gaseous Diffusion Plant,”
Oak Ridge Gaseous Diffusion Plant report AECU-4173 (April
1959).
162. C. L. Schuske and J. W. Morfitt, “An
Empirical Study of Some Critical Mass Data,”
Carbide and Carbon Chemicals Corp., Y-12 Plant report Y-533
(December 1949).
163. Deanne Dickinson and C. L. Schuske, “An
Empirical Model for Safe Pipe Intersections Containing
Fissile Solution,” Nucl.
Technol. 10, 179-187 (1971).
164. N. F. Cross, G. E. Whitesides, and R. J. Hinton, “Monte
Carlo Analysis of Experimentally Critical Pipe Intersections,”
Trans. Am. Nucl. Soc. 17, 268 (1973).
165. Deanne Dickinson, “Nominally
Reflected Pipe Intersections Containing Fissile Solution,”
Nucl. Technol. 26, 265-277 (1975)
166. “Nuclear Criticality Safety Criteria for Steel-Pipe
Intersections Containing Aqueous Solutions of Fissile
Materials,” ANSI/ANS-8.9-1987 (American National Standards
Institute, Inc., New York, 1987).
167. J. T. Thomas, “Reflectors,
Infinite Cylinders, and Nuclear Criticality,”
Nucl. Sci. Eng. 67, 279-295 (1978).
168. Dixon Callihan, D. F. Cronin, J. K. Fox, R. L.
Macklin, and J. W. Morfitt, “Critical
Mass Studies, Part IV,”
Carbide and Carbon Chemicals Corp., K-25 Plant report K-406
(November 1949).
169. L. W. Gilley, D. F. Cronin, J. K. Fox, and J. T.
Thomas, “Critical
Arrays of Neutron-Interacting Units,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1961,” Oak Ridge National
Laboratory report ORNL-3193 (October 1961), pp. 159-167.
170. J. K. Fox and L. W. Gilley, “Critical
Parameters of Unreflected Arrays of Interacting Cylinders
Containing Aqueous Solutions of U235,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1959,” Oak Ridge National
Laboratory report ORNL-2842 (November 1959), pp. 82-84.
171. J. K. Fox and L. W. Gilley, “Critical
Parameters of Aqueous Solutions of U235,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1957,” Oak Ridge National
Laboratory report ORNL-2389 (October 1957), pp. 71-83.
172. A. V. Kamaev, B. G. Dubovskii, V. V. Vavilov, G. A.
Popov, Yu. D. Palamarchuk, and S. P. Ivanov, “Experimental
Investigation of Effects of Interaction of Two Subcritical
Reactors,” translated from
a publication of the State Committee of the Council of
Ministers of the USSR on the Utilization of Atomic Energy,
Moscow, 1960, U. S. Atomic Energy Commission report
AEC-tr-4708 (U. S. Department of Energy, Technical
Information Center, Oak Ridge, Tennessee).
173. B. G. Dubovskii, A. V. Kamaev, G. M. Vladykov, F. M.
Kuznetsov, V. Z. Nozik, Yu. D. Palamarchuk, G. A. Popov, and
V. V. Vavilov, “Interaction
of Subcritical Reactors,”
J. Nucl. Energy, Parts A/B 19, 271-277 (1965).
174. J. K. Fox and L. W. Gilley, “Some
Studies of Water, Styrofoam, and Plexiglas Reflectors,”
in “Neutron Physics Division Annual Progress Report for
Period Ending September 1, 1958,” Oak Ridge National
Laboratory report ORNL-2609 (October 1958), pp. 38-40.
175. Grover Tuck and H. E. Clark, “Critical
Parameters of a Uranium Solution Slab-Cylinder System,”
Nucl. Sci. Eng. 40, 407-413 (1970).
176. E. B. Johnson, “Critical
Dimensions of Arrays of Aqueous Uranyl Fluoride Solution
Containing Uranium Enriched to 5% in 235U,”
in “Neutron Physics Division Annual Progress Report for
Period Ending August 1, 1965,” Oak Ridge National Laboratory
report ORNL-3858 (November 1965), pp. 15,16.
177. J. T. Thomas, “Experimental
and Calculated System Criticality,”
in Proceedings of the Symposium Criticality Control of
Fissile Materials, Stockholm, 1-5 November 1965
(International Atomic Energy Agency, Vienna, 1966), pp.
149-175.
178. C. L. Schuske, “Two
Experimental Subcritical Arrays of Pu(NO3)4
Solution,” Dow Chemical
Co., Rocky Flats Plant report RFP-325 (July 1963).
179. J. C. Bouly, R. Caizergues, E. Deilgat, M. Houelle,
and L. Maubert, “Neutron
Interaction in Air Between Cylindrical Containers Holding
Either Uranium or Plutonium Solutions,”
(in French) Commissariat a l’Energie Atomique report
CEA-R-3946 (March 1970).
180. B. M. Durst, E. D. Clayton, and J. H. Smith, “Critical
Experiments with Arrays of Three-Liter Bottles Filled with
Pu(2.8)(NO3)4,”
Trans. Am. Nucl. Soc. 41, 356-358 (1982).
181. J. T. Thomas, “Criticality
of 233U Aqueous Nitrate Solution in Reflected and
Unreflected Arrays,” Trans.
Am. Nucl. Soc. 10, 538,539 (1967).
182. R. C. Lloyd, E. D. Clayton, and J. H. Chalmers, “Criticality
of Arrays of 233U Solution,”
Nucl. Appl. 4, 136-141 (1968).
183. J. T. Thomas, “Critical
Three-Dimensional Arrays of Neutron-Interacting Units,”
Oak Ridge National Laboratory report ORNL-TM-719 (October
1963).
184. S. R. Bierman, B. M. Durst, and E. D. Clayton, “Criticality
Experiments with Subcritical Clusters of Low Enriched UO2
Rods in Water with Uranium or Lead Reflecting Walls,”
Nucl. Technol. 47, 51-58 (1980).
185. S. R. Bierman and E. D. Clayton, “Criticality
Experiments with Subcritical Clusters of 2.35 and 4.31 wt%
235U-Enriched Rods in Water with Steel Reflecting
Walls,” Nucl. Technol.
54, 131-144 (1981).
186. J. T. Mihalczo, “Prompt-Neutron
Decay in a Two Component Enriched-Uranium-Metal Critical
Assembly,” Trans. Am.
Nucl. Soc. 6, 60,61 (1963).
187. J. T. Thomas, “Critical
Experiments with UF6 Cylinder Model 8A Containers,”
Union Carbide Corp., Y-12 Plant report Y-DR-128 (September
1974).
188. T. G. McCreless, D. R. Smith, G. A. Jarvis, and Dick
Duffy, “Neutronic
Isolation Characteristics of Concrete, Lead, Wood,
Polyethylene, and Beryllium,”
Trans. Am. Nucl. Soc. 8, 441 (1965).
189. J. D. White and C. R. Richey, “Neutron
Interaction Between Multiplying Media Separated by Various
Materials,” Trans. Am.
Nucl. Soc.8, 441,442 (1965).
190. J. T. Mihalczo and J. J. Lynn, “Multiplication
Measurements with Highly Enriched Uranium Metal Slabs,”
Oak Ridge National Laboratory report ORNL-CF-59-7-87 (July
1959).
191. J. T. Thomas, “Critical
Three-Dimensional Arrays of U(93.2)-Metal Cylinders,”
Nucl. Sci. Eng. 52, 350-359 (1973).
192. E. C. Crume and J. T. Thomas, “Critical
and Near-Critical Graphite-Moderated Arrays of U(93.2)
Cylinders,” Trans. Am.
Nucl. Soc. 12, 336,337 (1969).
193. C. L. Schuske, C. L. Bell, G. H. Bidinger, and D. F.
Smith, “Industrial
Criticality Measurements on Enriched Uranium and Plutonium.
Part II,” Dow Chemical Co.,
Rocky Flats Plant report RFP-248 (January 1962).
194. C. L. Schuske, A. Goodwin, Jr., G. H. Bidinger, and
D. F. Smith, “Interaction
of Two Metal Slabs of Plutonium in Plexiglas,”
Dow Chemical Co., Rocky Flats Plant report RFP-174 (December
1959).
195. O. C. Kolar, H. F. Finn, and N. L. Pruvost, “Livermore
Plutonium Program: Experiments and Calculations,”
Nucl. Technol. 29, 57-72 (1976).
|
|
|
LA-12808 and Reference Set: Nuclear Criticality Safety
Guide.
|
0. N. L. Pruvost, H. C. Paxton, editors, “Nuclear
Safety Guide,”
Los Alamos National Laboratory report LA-12808 (1996).
1. A. D. Callihan, W. J. Ozeroff, H. C. Paxton, C. L.
Schuske, “Nuclear
Safety Guide”,
US Atomic Energy Commission report TID-7016 (1957).
2. J. T. Thomas, editor, “Nuclear
Safety Guide, TID-7016, Revision 2,”
US Nuclear Regulatory Commission report NUREG/CR-00951 ORNL/NUREG/CSD-6
(1978).
3. “Nuclear
Safety Guide,”
US Atomic Energy Commission report TID-7016, Rev. I (1961).
4. American National Standard for Nuclear Criticality Safety
in Operations with Fissionable Materials Outside Reactors,
ANSI/ANS-8.1-1983, American Nuclear Society, LaGrange Park,
IL (1983).
5. American National Standard for Nuclear Criticality
Control of Special Actinide Elements, ANSI/ANS-8.15-1981,
American Nuclear Society, LaGrange Park, IL (1981).
6. F. William Walker, Josef R. Parrington, and Frank Feiner,
editors, Nuclides and Isotopes, Fourteenth Edition, GE
Nuclear Energy, San Jose, CA, 12-13 (1989).
7.
Proceedings
of the 4th Annual Scientific & Technical Conference on
Nuclear Energy and Human Safety, Nizhni Novgorod, Russia,
June 28 - July 2, 1993, NE-93 (1993).
8. H. C. Paxton, “Glossary
of Nuclear Criticality Terms,”
Los Alamos National Laboratory report LA-11627-MS (1989).
9. “Glossary of Terms in Nuclear Science and Technology,”
prepared by ANS-9, the American Nuclear Society Standards
Subcommittee on Nuclear Terminology and Units, American
Nuclear Society, LaGrange Park, IL (1986).
10. E. D. Clayton, “Anomalies
of Nuclear Criticality,”
Pacific Northwest Laboratories report PNL-SA-4868 Rev. 5
(1979).
11. H. C. Paxton and N. L. Pruvost, “Critical
Dimensions of Systems Containing 235U,
239Pu, and
233U., 1986 Revision,”
Los Alamos National Laboratory report LA-10860-MS (1987).
12. L. M. Petrie and N. F. Landers, “KENO
V.a, An Improved Monte Carlo Criticality Program With
Supergrouping,”
NUREG/CR-0200, Volume 2, Section F11, ORNL/NUREG/CSD-2/VI/R2
(1984).
13. J. F. Briesmeister, editor, “MCNP
- A General Monte Carlo N-Particle Transport Code, Version
4A,”
Los Alamos National Laboratory report LA-12625-M (1993).
14. “MONK6
- A Monte Carlo Code for Criticality Safety Calculations,”
ANSWERS Service, AEA Reactor Services, Winfrith Technology
Center, Dorchester, UK (1990).
15. S. Glasstone and M. C. Edlund, The Elements of Nuclear
Reactor Theory, D. Van Nostrand Co., Inc., Princeton, NJ
(1952).
16. A. M. Weinberg and E. P. Wigner, The Physical Theory of
Neutron Chain Reactors, The University of Chicago Press,
Chicago, IL (1958).
17. H. S. Isbin, Introductory Nuclear Reactor Theory,
Reinhold Publishing Corp., New York, NY (1963).
18. G. I. Bell and S. Glasstone, Nuclear Reactor Theory, Van
Nostrand Reinhold, New York, NY (1970).
19. J. R. Lamarsh, Introduction to Nuclear Reactor Theory,
Addison-Wesley, Reading, MA (1972).
20. A. F. Henry, Nuclear-Reactor Analysis, MIT Press,
Cambridge, MA (1975).
21. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor
Analysis, Wiley, New York, NY (1976).
22. S. Glasstone and A. Sesonske, Nuclear Reactor
Engineering, 3rd Edition, Van Nostrand Reinhold, New York,
NY (1981).
23. R. A. Knief, Nuclear Criticality Safety, Theory and
Practice, American Nuclear Society, LaGrange Park, IL
(1985).
24. R. A. Knief, Nuclear Engineering, Theory and Technology
of Commercial Nuclear Power, 2nd Edition, Taylor & Francis/
Hemisphere, Washington, DC (1992).
25. American National Standard Administrative Practices for
Nuclear Criticality Safety, ANSI/ANS-8.19-1984, American
Nuclear Society, LaGrange Park, IL (1984).
26. American National Standard Nuclear Criticality Safety
Training, ANSI/ANS-8.20-1991, American Nuclear Society,
LaGrange Park, IL (1991).
27. American National Standard Criteria for Nuclear
Criticality Safety Controls in Operations with Shielding and
Confinement, ANSI/ANS-8.10-1983, American Nuclear Society,
LaGrange Park, IL (1983).
28. American National Standard Safety Guide for the
Performance of Critical Experiments, ANSI-N405-1975/ANS-1,
American Nuclear Society, LaGrange Park, IL (1975).
29. American National Standard for Safety in Conducting
Subcritical Neutron Multiplication Measurements in Situ,
ANSI/ANS-8.6-1983, American Nuclear Society, LaGrange Park,
IL (1983).
30. W. R. Stratton, revised by D. R. Smith, “A
Review of Criticality Accidents,”
Lawrence Livermore National Laboratory report DOE/NCT-04
(1989).
31. American National Standard Use of Borosilicate-Glass
Raschig Rings as a Neutron Absorber in Solutions of Fissile
Material, ANSI/ANS-8.5-1986, American Nuclear Society,
LaGrange Park, IL (1986).
32. G. E. Hansen and H. C. Paxton, “Reevaluated
Critical Specifications of Some Los Alamos Fast-Neutron
Systems,”
Los Alamos Scientific Laboratory report LA-4208 (1969).
33. J. T. Mihalczo, J. J. Lynn, J. R. Taylor, and G. E.
Hansen, “Measurements
With an Unreflected Uranium (93.2%) Metal Sphere,”
Proceedings of a Topical Meeting on Physics and Methods in
Criticality Safety, Nashville, TN, September 19-23, 1993,
American Nuclear Society, LaGrange Park, IL, 26-33 (1993).
34. G. R. Keepin, “Nuclear
Fission and Nuclear Safeguards: Common Technologies and
Challenges,”
Proceedings of the Conference 50 Years with Nuclear Fission,
Gaithersburg, MD, April 26-28, 1989, National Academy of
Sciences and National Institute of Standards and Technology,
Washington, DC (1989).
35. R. L. Price and N. L. Pruvost, “Inventory
Difference Information and Criticality Safety,”
Proceedings of an International Topical Meeting on Safety
Margins in Criticality Safety, San Francisco, CA, November
26-30, 1989, American Nuclear Society report
ISBN:89448-t42-2, 165-167 (1989).
36. R. G. Taylor, “Monitoring
for Uranium Accumulations in Diffusion Plant Equipment,”
Oak Ridge Gaseous Diffusion Plant report K-L-6316 (1973).
37. J. T. Mihalczo, E. D. Blakeman, G. E. Ragan, E. B.
Johnson, and Y. Hachiya, “Dynamic
Subcriticality Measurements Using the
252Cf-Source-Driven Noise Analysis Method,”
Nuclear Science and Engineering, 104, 314-338 (1990).
38. E. R. Martin, D. F. Jones, and L. G. Speir, “Passive
Segmented Gamma Scan Operation Manual,
” Los Alamos Scientific Laboratory report LA-5652-M (1974).
39. R. B. Walton, W. I. Whitted, and R. A. Forster, “Gamma-Ray
Assay of Low-Enriched Uranium Waste,”
Nuclear Technology, 24, 81-92 (1974).
40. C. J. Umbarger and L. R. Cowder, “Portable
Radioactivity Monitor for Liquid Effluents, Surface
Contaminations, and Bulk Solid Wastes,”
Nuclear Instruments and Methods, 121, 491-498 (1974).
41. J. T. Mihalczo, “Randomly
Pulsed Neutron Measurements for Safeguards Interrogation,”
Oak Ridge Y-12 Plant report Y-DR-79 (1972).
42. J. E. Foley and L. R. Cowder, “Assay
of the Uranium Content of Rover Scrap with the Random Source
Interrogation System,”
Los Alamos Scientific Laboratory report LA-5692-MS (1974).
43. R. Berg, R. Swennen, G. Birkhoff, L. Bondar, J. Ley, and
B. Busca, “On
the Determination of the Pu-240 in Solid Waste Containers by
Spontaneous Fission Neutron Measurements. Application to
Reprocessing Plant Waste,”
EUR 5158e, Joint Nuclear Research Centre, ISPRA
Establishment, Italy (1974).
44. T. D. Reilly, E. R. Martin, J. L. Parker, L. G. Speir
and R. D. Walton, “A
Continuous In-Line Monitor for UF6
Enrichment,”
Nuclear Technology, 23, 318-327 (1974).
45. J. L. Forstner, “Nuclear
Safety Control in the Chemical Processing Facilities of the
Savannah River Plant,”
Proceedings of a Symposium on Criticality Control of Fissile
Materials, Stockholm, November 1-5, 1965, International
Atomic Energy Agency, Vienna, 627-639 (1965).
46. American National Standard Criticality Accident Alarm
System, ANSI/ANS-8.3-1986, American Nuclear Society,
LaGrange Park, IL (1986).
47. J. M. Juran, F. M. Gryna, Jr., and R. S. Bingham, Jr.,
editors, Quality Control Handbook, Third Edition,
McGraw-Hill, New York, NY (1974).
48. American National Standard Quality Assurance Program
Requirements for Nuclear Facilities, ASME NQA-1-1989
Edition, American Society of Mechanical Engineers, New York,
NY (1989).
49. American National Standard Quality Assurance
Requirements for Nuclear Facility Applications, ASME
NQA-2-1989 Edition, American Society of Mechanical
Engineers, New York, NY (1989).
50. J. S. Arendt, D. K. Lorenzo, and A. F. Lusby, “Evaluating
Process Safety in the Chemical Industry, A Manager's Guide
to Quantitative Risk Assessment,”
JBF Associates, Inc. (1989).
51. J. R. Wilson, “Applications
of PRA to Criticality Safety at ICPP,”
Proceedings of an International Topical Meeting on Safety
Margins in Criticality Safety, San Francisco, CA, November
26-30, 1989, American Nuclear Society report ISBN:
89448-142-2, 186-191 (1989).
52. R. R. Jackson, “Science
Applications International Corporation's Experience in
Applying Probabilistic Safety Assessment Techniques to
Nuclear Criticality Accident Analysis,”
Proceedings of an International Topical Meeting on Safety
Margins in Criticality Safety, San Francisco, CA, November
26-30, 1989, American Nuclear Society report ISBN:
89448-142-2, 179-182 (1989).
53. Nuclear Regulatory Commission Regulatory Guide 3.33, “Assumptions
Used for Evaluating the Potential Radiological Consequences
of Accidental Nuclear Criticality in a Fuel Reprocessing
Plant,”
US Nuclear Regulatory Commission (1977).
54. W. Thomas and B. Gmal, “In-Depth
Analysis of Accidental Criticality in a Reprocessing Plant,”
Proceedings of an International Topical Meeting on Safety
Margins in Criticality Safety, San Francisco, CA, November
26-30, 1989, American Nuclear Society report ISBN:
89448-142-2, 207-213 (1989).
55. T. P. McLaughlin, “Process
Criticality Accident Likelihoods, Consequences and Emergency
Planning,”
Nuclear Energy, 31, No. 2, 143-147 (1992).
56. Proceedings of the Fifth International Conference on
Nuclear Criticality Safety, Albuquerque, NM, September
17-21, 1995 (1995).
57. R. L. Seale, “Consequences
of Criticality Accidents,”
Nuclear Criticality Safety, US Atomic Energy Commission
report TID-26286, 16-24 (1974).
58. A. D. Callihan and J. T. Thomas, “Accidental
Radiation Excursion at the Oak Ridge Y-12 Plant - I,”
Health Physics, 1, 363-372 (1959).
59. J. D. McLendon, “Accidental
Radiation Excursion at the Oak Ridge Y-12 Plant - II,”
Health Physics, 2, 21-29 (1959).
60. G. S. Hurst, R. H. Richie, and L. C. Emerson, “Accidental
Radiation Excursion at the Oak Ridge Y-12 Plant - III,”
Health Physics, 2, 121-133 (1959).
61. T. L. Shipman, “Acute
Radiation Death Resulting from an Accidental Nuclear
Critical Excursion,”
Journal of Occupational Medicine, Special Supplement,
147-149 (1961).
62. H. C. Paxton, R. D. Baker, W. J. Maraman, and Roy Reider,
“Nuclear-Critical
Accident at the Los Alamos Scientific Laboratory on December
30, 1958,”
Los Alamos Scientific Laboratory report LAMS-2293 (1959).
63. W. C. Roesch et al., “Dosimetry
Investigation of the Recuplex Criticality Accident,”
Health Physics, 9, 757-768 (1963).
64. T. G. Hughes, “Criticality
Incident at Windscale,”
Nuclear Engineering International, 17, No. 189, 95-97
(1972).
65. W. Sweet, “Kyshtym
Visit Gives First Look at Soviet Plutonium Production
Complex,”
Physics Today, November 1989, 87-89 (1989).
66. L. A. Buldakov, S. N. Demin, V. A. Kostyuchenko, N. A.
Koshurnikova, L. Yu. Krestinina, M. M. Saurov, Z. B.
Tokarskaya, V. L. Shvedov, and 1. A. Ternovskij, “Medical
Consequences of the Radiation Accident in the Southern
Urals,”
Proceedings of an International Symposium on Recovery
Operations in the Event of a Nuclear Accident or
Radiological Emergency, Vienna, November 6-10, 1989,
IAEA-SM-316/55-2, 419-431 (1989).
67. “Investigation
of Incident in Ion Exchange Resin,”
HRC report 3719, Atlantic Richfield Hanford Company,
Richland, WA (1976).
68. B. L. Broadhead and C. M. Hopper, “Updated
Tool for Nuclear Criticality Accident Emergency Response,”
Transactions of the American Nuclear Society, 72, 218-220
(1995).
69. J. T. Thomas, “Criticality
of Large Systems of Subcritical U(93) Components,”
Oak Ridge National Laboratory report ORNL-CDC-1 (1967).
70. P. Lécorché and R. L. Seale, “A
Review of the Experiments Performed to Determine the
Radiological Consequences of a Criticality Accident,”
Oak Ridge Y-12 Plant report Y/CDC-12 (1973).
71. American National Standard for Nuclear Criticality
Control and Safety of Plutonium-Uranium Fuel Mixtures
Outside Reactors, ANSI/ANS-8.12-1987, American Nuclear
Society, LaGrange Park, IL (1987).
72. H. K. Clark, “Subcritical
Limits for Plutonium Systems,”
Nuclear Science and Engineering, 79, 65-84 (1981).
73. H. K. Clark, “Subcritical
Limits for Uranium-235 Systems,”
Nuclear Science and Engineering, 81, 351-378 (1982).
74. H. K. Clark, “Subcritical
Limits for Uranium-233 Systems,”
Nuclear Science and Engineering, 81, 379-395 (1982).
75. E. D. Clayton, H. K. Clark, Gordon Walker, and R. A.
Libby, “Basis
for Extending Limits in ANSI Standard for Mixed Oxides to
Heterogeneous Systems,”
Nuclear Technology, 75, 225-229 (1986).
76. J. W. Webster, “Calculated
Neutron Multiplication Factors of Uniform Aqueous Solutions
Of 233U and
235U,”
Oak Ridge National Laboratory report ORNL-CDC-2 (1967).
77. S. R. Bierman, G. R. Smolen, and T. Matsumoto, “Experimental
Criticality Data Comparing Organic and Water Moderation,”
Transactions of the American Nuclear Society, 54, 195-196
(1987).
78. H. K. Clark, “Effect
of Distribution of Fissile Material on Critical Mass,”
Nuclear Science and Engineering, 24, 133-141 (1966).
79. W. H. Roach and D. R. Smith, “Estimates
of Maximum Subcritical Dimensions of Single Fissile Metal
Units,”
Oak Ridge National Laboratory report ORNL-CDC-3 (1967).
80. D. R. Smith and W. U. Geer, “Critical
Mass of a Water-Reflected Plutonium Sphere,”
Nuclear Applications and Technology, 7, No. 5, 405-408
(1969).
81. W. R. Stratton, “Criticality
Data and Factors Affecting Criticality of Single Homogeneous
Units,”
Los Alamos Scientific Laboratory report LA-3612 (1964).
82. C. G. Chezem and R. G. Steinke, “Low-Enrichment
Uranium-Metal Exponential Experiments,”
Nuclear Science and Engineering, 31, 549 (1967).
83. M. Darrouzet, J. P. Chaudat, E. A. Fischer, G. Ingram,
J. E. Sanders, W. Scholtyssek, “Studies
of Unit Kinf Lattices in Metallic Uranium Assemblies Zebra
8H Sneak 8, Ermine, and Harmonie UK,”
Proceedings of an International Sympostum on Physics of Fast
Reactors, Tokyo, October 16-19, 1973, Committee for the
International Symposium on Physics of Fast Reactors, A28
(1973).
84. C. E. Newlon, “The
Effect of Uranium Density on the Safe U-235 Enrichment
Criterion,”
Oak Ridge Gaseous Diffusion Plant report K-1550 (1962).
85. E. D. Clayton, H. K. Clark, D. W. Magnuson, J. H.
Chalmers, Gordon Walker, N. Ketzlach, Ryohei Kiyose, C. L.
Brown, D. R. Smith, and R. Artigas, “Basis
for Subcritical Limits in Proposed Criticality Safety
Standard for Mixed Oxides,”
Nuclear Technology, 35, 97-111 (1977).
86. H. K. Clark, “Critical
and Safe Masses and Dimensions of Lattices of U and U02
Rods in Water,”
DP-1014, Savannah River Laboratory (1966).
87. H. K. Clark, “Maximum
Safe Limits for Slightly Enriched Uranium and Uranium Oxide,”
Proceedings of a Symposium on Criticality Control of Fissile
Materials, Stockholm, November 1-5, 1965, International
Atomic Energy Agency, Vienna, 35-49 (1965).
88. R. C. Lloyd, “Buckling
Measurements of Fuel Elements in a Random Array, Water
Moderated,”
Nuclear Physics Research Quarterly Report, October-December,
1957, Hanford Engineering Development Laboratory report
HW-54591, 35-36 (1957).
89. R. C. Lloyd, “Buckling
Measurements for Fuel Elements in a Random Array,”
Nuclear Physics Research Quarterly Report, January-March,
1958, Hanford Engineering Development Laboratory report
HW-55879, 12-13 (1958).
90. J. T. Thomas, “Calculated
Criticality of Water Moderated Oxides of Uranium-233,
Thorium-232, and Carbon Mixtures,”
Oak Ridge Y-12 Plant report Y-DR-107 (1973).
91. R. C. Lloyd and E. D. Clayton, “Criticality
Safety Data Applicable to Processing Liquid-Metal Fast
Breeder Reactor Fuel,”
Nuclear Science and Engineering, 59, 21-26 (1976).
92. J. K. Fox, L. W. Gilley, and D. Callihan, “Critical
Mass Studies, Part IX, Aqueous U235
Solutions,”
Oak Ridge National Laboratory report ORNL-2367 (1958).
93. J. K. Fox and L. W. Gilley, “Critical
Parameters for Poisoned Annular Cylinders Containing Aqueous
Solutions of U235,”
Neutron Physics Division Annual Progress Report for Period
Ending September 1, 1958, Oak Ridge National Laboratory
report ORNL-2609, 31-33 (1958).
94. C. Clouet d'Orval, E. Deilgat, M. Houelle, and P.
Lécorché, “Experimental
Research in France on Criticality Problems”
(in French), Proceedings of a Symposium on Criticality
Control of Fissile Materials, Stockholm, November 1-5, 1965,
International Atomic Energy Agency, Vienna, 193-213 (1965).
95. J. E. Tanner and H. M. Forehand, “Critical
Experiments for Large Scale Enriched Uranium Solution
Handling,”
Proceedings of a Topical Meeting on Criticality Safety in
the Storage of Fissile Material, Jackson, WY, September
8-11, 1985, American Nuclear Society report
ISBN:89448-119-3, 65-79 (1985).
96. R. C. Lloyd and T. Koyama, “Criticality
Experiments with Mixed Plutonium-Uranium Nitrate Solution at
Plutonium Fractions of 0.2, 0.5, and 1.0 in Annular
Cylindrical Geometry,”
Transactions of the American Nuclear Society, 56, 318-319
(1988).
97. American National Standard Nuclear Criticality Safety
Criteria for Steel-Pipe Intersections Containing Aqueous
Solutions of Fissile Material, ANSI/ ANS-8.9-1987, American
Nuclear Society, LaGrange Park, IL (1987).
98. D. Dickinson and C. L. Schuske, “An
Empirical Model for Safe Pipe Intersections Containing
Fissile Solution,”
Nuclear Technology, 10, 179-187 (1971).
99. E. B. Johnson, “The
Nuclear Criticality of Intersecting Cylinders of Aqueous
Uranyl Fluoride Solutions,”
Oak Ridge Y-12 Plant report Y-DR-129 (1974).
100. N. F. Cross, G. E. Whitesides, and R. J. Hinton, “Monte
Carlo Analysis of Experimentally Critical Pipe
Intersections,”
Transactions of the American Nuclear Society, 17, 268
(1973).
101. L. B. Engle, G. E. Hansen, and H. C. Paxton, “Reactivity
Contributions of Various Materials in Topsy, Godiva, and
Jezebel,”
Nuclear Science and Engineering, 8, 543-569 (1960).
102. J. D. Orndoff, H. C. Paxton, and G. E. Hansen, “Critical
Masses of Oralloy at Reduced Concentrations and Densities,”
Los Alamos Scientific Laboratory report LA-1251 (1951).
103. R. C. Lloyd, E. D. Clayton, and L. E. Hansen, “Criticality
of Plutonium Nitrate Solutions Containing Soluble
Gadolinium,”
Nuclear Science and Engineering, 48, 300-304 (1972).
104. R. C. Lloyd and E. D. Clayton, “Effect
of Boron and Gadolinium on the Criticality of
Plutonium-Uranium Systems,”
Transactions of the American Nuclear Society, 23, 234-237
(1976).
105. E. D. Clayton and C. L. Brown, “Criticality
and Nuclear Safety of Slightly Enriched Uranium,”
Chemical Engineering Progress Symposium Series, 61, No. 60,
33-43 (1965).
106. V. 1. Neeley, J. A. Berberet, and R. H. Masterson, “kinfinityof
Three Weight Percent 235U
Enriched U03 and U02(NO3)2
Hydrogeneous Systems,”
HW-66882, Hanford Engineering Development Laboratory (1961).
107. R. Gwin and D. W. Magnuson, “The
Measurement of Eta and Other Nuclear Properties of
233U and
235U in Critical Aqueous Solutions,”
Nuclear Science and Engineering, 12, 364-380 (1962).
108. W. E. Converse, R. C. Lloyd, E. D. Clayton, and W. A.
Yuill, “Critical
Experiments Using High-Enriched Uranyl Nitrate with Cadmium
Absorber,”
Transactions of the American Nuclear Society, 32, 328-330
(1979).
109. J. T. Thomas, “Reflectors,
Infinite Cylinders, Intersecting Cylinders, and Nuclear
Criticality,”
Nuclear Science and Engineering, 67, 279-295 (1978).
110. R. C. Lloyd, C. R. Richey, E. D. Clayton, and D. R.
Skeen, “Criticality
Studies with Plutonium Solutions”,
Nuclear Science and Engineering, 25, 165-173 (1966).
111. G. R. Handley, R. C. Robinson, and J. C. Cline, “Effects
of Concrete Composition in Nuclear Criticality Safety
Calculations,”
Transactions of the American Nuclear Society, 61, 182-184
(1990).
112. H. F. Henry, J. R. Knight, and C. E. Newlon, “General
Application of a Theory of Neutron Interaction,”
Oak Ridge Gaseous Diffusion Plant report K-1309 (1956).
113. H. C. Paxton, “History
of Density-Analog Storage Criteria,”
Proceedings of a Topical Meeting on Criticality Safety in
the Storage of Fissile Material, Jackson, WY, September
8-11, 1985, American Nuclear Society report ISBN:
89448-119-3, 346-352 (1985).
114. J. T. Thomas, “Remarks
on Surface Density and Density Analog Representation of
Array Criticality,”
Transactions of the American Nuclear Society, 22, 299-300
(1975).
115. J. T. Thomas, “Surface
Density and Density Analogue Models for Criticality in
Arrays of Fissile Materials,”
Nuclear Science and Engineering, 62, 424-437 (1977).
116. M. C. Evans and J. R. Bowe, “Applications
of the Limiting Surface Density Method to Transport and
Storage of Special Nuclear Materials,”
Proceedings of a Topical Meeting on Criticality Safety in
the Storage of Fissile Material, Jackson, WY, September
8-11, 1985, American Nuclear Society report ISBN:
89448-119-3, 307-321 (1985).
117. D. R. Smith, “Criteria
and Evaluation for the Storage of Fissile Materials in a
Large and Varied Reactor Research Development Programme,”
Proceedings of a Symposium on Criticality Control of Fissile
Materials, Stockholm, November 1-5, 1965, International
Atomic Energy Agency, Vienna, 667-677 (1965).
118. H. C. Paxton, “Density-Analog
Techniques,”
Proceedings of the Livermore Array Symposium, Livermore, CA,
September 23-25, 1968, Lawrence Radiation Laboratory report
LRL-CONF-680909, 6-11 (1968).
119. American National Standard Guide for Nuclear
Criticality Safety in the Storage of Fissile Materials,
ANSI-NI6.5-1975/ANS-8.7, American Nuclear Society, LaGrange
Park, IL (1975).
120. H. K. Clark, “A
Simple Practical Method for Calculating Interaction,”
Proceedings of a Symposium on Criticality Control of Fissile
Materials, Stockholm, November 1-5, 1965, International
Atomic Energy Agency, Vienna, 87-102 (1965).
121. H. K. Clark, “Interaction
of Fissionable Units,”
Nuclear Science and Engineering, 15, 20-28 (1963).
122. H. K. Clark, “Application
of a Simple, Practical Method for Computing Interaction to
Arrays Found Experimentally to be Critical,”
Nuclear Science and Engineering, 20, 307-313 (1964).
123. A. F. Thomas and R. A. Scriven, “Neutron
Interaction in Fissile Assemblies,”
Progress in Nuclear Energy, Series IV, Vol. 3 - Technology,
Engineering and Safety, Pergamon Press, London, 253-291
(1960).
124. J. T. Thomas, “Critical
Three-Dimensional Arrays of U(93.2)-Metal Cylinders,”
Nuclear Science and Engineering, 52, 350-359 (1973).
125. 0. C. Kolar, H. F. Finn, and N. L. Pruvost, “Livermore
Plutonium Array Program: Experiments and Calculations,”
Nuclear Technology, 29, 57-72 (1976).
126. J. T. Thomas, “Experimental
and Calculated System Criticality,”
Proceedings Of a Symposium on Criticality Control of Fissile
Materials, Stockholm, November 1-5, 1965, International
Atomic Energy Agency, Vienna, 149-175 (1965).
127. J. T. Thomas, “The
Criticality of Cubic Arrays of Fissile Materials,”
Oak Ridge Y-12 Plant report Y-CDC-10 (1971).
128. D. Yearwood, E. D. Clayton, and B. L. Koponen, “Anomalous
Effects of Moderation in Transportation and Storage Arrays -
Revisited,”
Proceedings of a Topical Meeting on Physics and Methods in
Criticality Safety, Nashville, TN, September 19-23, 1993,
American Nuclear Society, LaGrange Park, IL, 99-101 (1993).
129. J. T. Thomas “Experimental
Measurements with Arrays of U(97.7)F6
Neutron-Coupled Through Concrete,”
Transactions of the American Nuclear Society, 19, 199-200
(1974).
130. G. D. Ellis and G. R. Handley, “Enriched
Uranium Storage in Steel Tubes Embedded in Concrete,”
Proceedings of a Topical Meeting on Criticality Safety in
the Storage of Fissile Material, Jackson, WY, September
8-11, 1985, American Nuclear Society report
ISBN:89448-119-3, 186-198 (1985).
131. J. T. Thomas, “A
Criticality Indicator System for Storage of Fissile
Materials,”
Oak Ridge National Laboratory report UCCND-CSD-INF-48
(1975).
132. J. T. Thomas, “Criticality
of 233U Aqueous Nitrate
Solutions in Reflected and Unreflected Arrays,”
Transactions of the American Nuclear Society, 10, 538-539
(1967).
133. R. C. Lloyd, E. D. Clayton, and J. H. Chalmers, “Criticality
of Arrays of 233U
Solution,”
Nuclear Applications, 4, 136-141 (1968).
134. R. E. Rothe, “A
Survey of Fissile Solution Storage Methods: Champion the
Poisoned Tube Tank,”
Proceedings of a Topical Meeting on Criticality Safety in
the Storage of Fissile Material, Jackson, WY, September
8-11, 1985, American Nuclear Society report ISBN:
89448-119-3, 42-64 (1985).
135. J. T. Thomas, J. K. Fox, and E. B. Johnson, “Critical
Mass Studies, Part XIII. Borosilicate Glass Raschig Rings in
Aqueous Uranyl Nitrate Solutions,”
Oak Ridge National Laboratory report ORNL-TM-499 (1963).
136. J. T. Thomas, “Critical
Experiments with Aqueous Solutions of
233U02(NO3)2,”
Neutron Physics Division Annual Progress Report for Period
Ending May 31, 1968, Oak Ridge National Laboratory report
ORNL -4280, 53-55 (1968).
137. R. C. Lloyd, S. R. Bierman, and E. D. Clayton, “Criticality
of Plutonium Nitrate Solutions Containing Borated Raschig
Rings,”
Nuclear Science and Engineering, 50, 127-134 (1973).
138. R. C. Lloyd and E. D. Clayton, “Criticality
of Pu-U Nitrate Solution Containing Glass Raschig Rings,”
Transactions of the American Nuclear Society, 21, 236-237
(1975).
139. J. K. Fox and L. W. Gilley, “Critical
Parameters of Aqueous Solutions of U235,”
Neutron Physics Division Annual Progress Report for Period
Ending September 1, 1957, Oak Ridge National Laboratory
report ORNL-2389, 71-83 (1959).
140. D. Callihan, “Experiments
for Criticality Control,”
Proceedings of a Symposium on Criticality Control in
Chemical and Metallurgical Plants, KarIsruhe, Germany,
589-614 (1961).
141. O. D. Thompson and D. D. Yearwood, “Plutonium
Solution Storage in Arrays of Six-inch Pipes,”
Proceedings of a Topical Meeting on Criticality Safety in
the Storage of Fissile Material, Jackson, WY, September
8-11, 1985, American Nuclear Society report ISBN:
89448-119-3, 92-98 (1985).
142.
Safety Series No. 6
, Regulations for the Safe Transport of Radioactive
Materials, 1985 Edition, International Atomic Energy Agency,
Vienna (1985).
143. Safety Series No. 37, Advisory Material for the
Application of the IAEA Transport Regulations, Second
Edition, International Atomic Energy Agency, Vienna (1982).
144.
49 CFR 173.4,
Regulations, Packaging and Transportation, Radioactive
Materials, Department of Transportation (1991).
145.
10 CFR 71
, Packaging and Transportation of Radioactive Material,
Nuclear Regulatory Commission (1991).
146.
DOE Order 5480.3
(1985), Safety Requirements for the Packaging and
Transportation of Hazardous Materials,, Hazardous
Substances, and Hazardous Wastes (1985).
147. W. C. Jordan, N. F. Landers, and L. M. Petrie, “Validation
of KENO V.a, Comparison with Critical Experiments,”
Oak Ridge National Laboratory report ORNL/CSD/TM-238 (1986).
148. J. P. Nichols, C. L. Schuske, and D. W. Magnuson, “Use
of Borosilicate-Glass Raschig Rings as a Neutron Absorber in
Solutions of Fissile Material,”
Oak Ridge Y-12 Plant report Y-CDC-8 (1971).
149. E. O. Nurmi, “Use
of Borosilicate-Glass Raschig Rings in a Hostile
Environment,”
Transactions of the American Nuclear Society, 19, 181
(1974).
150. R. F. Christy and J. A. Wheeler, “Chain
Reaction of Pure Fissionable Materials in Solution,”
US Government report CP-400 (1943). |
|
Other |
ARH-600, Criticality Handbook |
Volume 1:
Criticality Safety—Nuclear Materials Section
Volume 2: Advance
Process Development Section
Volume 3: Advance
Process Development Section |
Archive |
Lawrence
Livermore National Laboratory Experimental Logbooks |
Array Experiments Phase 1
(UCRL-MI-135701-PH-1) |
Volume 1
Volume 2
Volume 3
Volume 4 |
|
|
Array
Experiments Phase 2 (UCRL-MI-135701-PH-2) |
Volume 1
Volume 2
Volume 3
Volume 4
Volume 5 (Includes
Phase 3, Volume 1) |
|
|
Array
Experiments Phase 3 (UCRL-MI-135701-PH-3) |
Volume 2 |
|