

CGAIN REACTION OP FURE FISSIOMADIA LCATERIATS IR SOLUTION

Rocert P. Christy and John h. Theele:

January i, 294E

ABSTRACT

The criticel mase on $94-239$ and the sorreapotaisy criticel dimessiovs of homogsneous mistures of $54-259$ vith verious nederatixif rusie have besn cajedlated es-a function of the cojcontratson of $5 s$. A simpien transfornation ankes the figures applicable to $92-205 \%$, Th
 indopendentiy by oppenheimer and Serdor. The probien or tire statiliz of a chsin rerction in solution edxd questions of peotosion aze dis. cussec.

Introduction
 solution or mixture. We must know in what quantities and concentrations the mixture would make a self sustaining chain reaction. Again, homogsingous mixtures of 49 (or 25) with suitable moderating media mint be used as seeds in a production plant or as power producing units themselves. For these reasons, the critical mess of 49 and the critical dimensions of homogeneous mixtures of 49 with various modernling media have been calculated as a function of the concentration of 49." The external boundary was treated as completely absorbing.
*Note: We are indebted to Oppenehimer for a letter from him received December 31, 1942 describing the results of similar calculations made independently by himself and Sorber. Wis are taking the liberty to quote fran this letter: "For a solution of 25 in water surrounded by a water cease the optimal ratio of 25 absorption to hydrogin absorption is 2.9 and the mass of 25 is about 700 g . I regard this value as not too sure sine some other calculations based on a slightly afferent treatment of til slowing down gave 450 g instead. A half a $k g$ is a pretty good guess. For 40 the absorption ratio will be very closely the same and thus the mass may be about one-half es great. We have also looked at the boiler surrounded by ordinary uranium instead of water, but it seems doubtful whether this will reduce the amount of material needed. Because of the shorter slowing path some gain can be expected by using a saturated hydrocarbon or paraffin instead of water.log lots of 49 seamed safe......opespacially in view of J......... the in innocuous character of the phenomena should the reaction start during procipiteion or centrifuging vel have handled the problem... [usinge....differential diffusion theory for the slow neutrons..... Otherwise the treatment is standard."

Since the function of the moderating medium is to slow the fission neutrons, it is apparent that the critical size will be of the order of the slowing down distance. The minimum concentration of 49 will be such that only one of the 2.2 neutrons per fission will be absorbed by 49 , the thermal neutron absorption by 49 will be about equal to that by the moderator. The optimum concentration (minimum critical mass in a sphere) will be about three times this minimum.

For high concentrations of 49 the fast neutron reactions contribute appreciably. This effect has been treated as a small increase in V, the number of neutrons per fission. This of course underestimates the affect and overestimates the mass at very high concentration, where the contribution from fast fission is not small.

Except for the corrections at high ooncentrations, the results for 25 or 23 can be obtained by multiplying the masses and densities by 1.7 and 1 respectively.

$$
\begin{equation*}
\Delta n+\frac{\mathrm{KP}_{t}-1}{\mathrm{~L}^{2}} n=0 \tag{1}
\end{equation*}
$$

Where n in the neutron density, P_{t} is the probability of a neutron hoeing so med to thermal energies before leaking out, k is the rewociacion recur ar an infinite medium, and L is the thermal dirfusion length. If the solution (for a sphere) is written $\frac{\sin \mathrm{Kr}}{\mathrm{r}}$

$$
\begin{equation*}
K^{2} L^{2}=k P_{t}(K)-1 \tag{2}
\end{equation*}
$$

Lot the concentration of 49 be measured by

$$
\begin{align*}
x & =\frac{\text { thermal absorption by } 49 \text { per unit volume }}{\text { thermal absorption by moderator per unit volume }} \\
\text { mien } & \left.L^{2}=\frac{L_{0}}{(1+x)\left(1+\frac{1}{5} \frac{\sigma_{g t}(H)}{\sigma} \operatorname{st}(M)\right.} x\right) \tag{3}
\end{align*}
$$

where L_{0} is the thermal diffusion length in the pure moderator and $\sigma_{a t}(M)$ and $\sigma_{\text {st }(M)}$ are respectively the thermal absorption and thermal scattering $\begin{gathered}\text { crose-sections of the moderator. The second term in the }\end{gathered}$ cent: 3 stor is a usually negligible correction to the total cross-section. It is assume hare that the presence of the 49 does not appreciably change ins mines, os your gen nuclei fer cm^{3} of solution. Also

$$
\begin{equation*}
k=\frac{V_{e} x}{1+\pi} \tag{4}
\end{equation*}
$$

Where V_{e} is the effective number of neutrons per thermal fission of 49 and ircluces the multiplication of neutrons by fast fission. We have taken

$$
\begin{equation*}
V_{\theta}=V\left[1+(V-1) \times \frac{E_{0} 5 \sigma_{a f}(M)}{\xi \sigma_{s f}(M)} \sigma_{a \Gamma}(49)-P_{a t}(49)-K_{1}(K)\right] \tag{5}
\end{equation*}
$$

The fast fission was supposed to include the range where the fission eross-section is essentially constant, i, e. from 10,000 est, where the $1 / \mathrm{V}$ lew meats the fast neutron cross-section of 1 up to fission energies. The number of collisions was then $5.5 . \quad P_{1}(K)$ is the average probabil-
 Fives the probability that a collision results in fission fere refers tr thermal neutrons and i to fast neutrons, $\frac{\sigma_{a t}(M)}{\sigma_{a t}(149)} x$
is only a masstra of the concentration of 49 .
Substituting (3), (4), (5), in (2) we get.

Expending the denominator on the left, we get a quadratic equation for x.

$$
999
$$

$$
\begin{aligned}
& -\left[1+K^{2} L_{0}^{2}\right]=0 \\
& \text { (7) }
\end{aligned}
$$

3
When Fermi's concept of neutron age applies in the slowing dow: procedure, so that the distribution of nascent thermal neutrons from a point source of fast neutrons can be written $e^{-\frac{n^{2}}{4 t}}$, then $P(K)=e^{-K^{2} \tau}$ and $P(K)=e^{-K Z} \mathcal{F}^{2}$ where τ is the appropriate age of the fast neutrons making fast fission. In water, the distribution of energetic neutrons from a fission source is $\frac{1}{n^{2}} e^{-\frac{2}{l}}$. After the first few collisions the distribution spreads in an approximately Gaussian manner with an age 7 from this lower energy to thermal energies. This consideration leads to $P_{1}(K)=\frac{\tan ^{-1} K L}{K Z}$ and $P_{t}(K)=\frac{t_{a n}-1 K \ell}{K Z} e^{-K 2}$.

The equation (7) for x was solved for various values of K_{0} Then the density of 49 which is proportional to x is known as a function of the critical dimensions of the mixture. For a sphere $R_{s}=\frac{\pi}{K}$ for a cylinder of infinite length $\mathcal{P}_{C}=\frac{4.4048}{K}$, and for a slab the thickness $F=\frac{\pi}{K}$
This permits calculation of the critical mass, mass/cm, and mass/ cm ${ }^{2}$ of 49 respectively for sphere, cylinder, and slab as a function of the density of 49 or as a function of the dimensions. Except for the region of large density, the critical mass of 25 or 23 is greater than that of 49 by the factor $\frac{\sigma_{a t}(49)}{\sigma_{a t}(a 5)}$ of $\frac{\sigma_{a t}(4,)}{\sigma_{a t}(23)}$, ${ }^{2}$, , by 1.7 crl for the same dimensions of mixture 。
. We took $V=2.2, \quad \sigma_{a f}(49)=1 \times 10^{-24} \mathrm{~cm}^{2}$ (fast fission).

$$
\sigma_{a t}(49)=1090 \times 10^{-24} \mathrm{~cm}^{2}
$$

Water: $\quad \sigma_{a t}(M)=0.4 \times 10^{-24} \mathrm{~cm}^{2}, \quad \xi \sigma_{s f}(M)=7.6 \times 10^{-24} \mathrm{~cm}^{2}$,

$$
\begin{aligned}
\sigma_{s t}(M) & =43 \times 10^{-24 \mathrm{~cm}^{2},} \quad l=7 \mathrm{~cm}, \quad L_{0}^{2}=8.3 \mathrm{~cm}^{2} \\
\tau & =10.7 \mathrm{~cm}^{2}
\end{aligned}
$$

These constants give for the ratio x the relation

$$
7 \times 10^{-4}\left(\frac{\tan ^{-1} K l}{K l}\right)^{2} e^{-2.2 K l^{2}} x^{2}+\left[22 \frac{\tan ^{-1} K l}{K l} e^{-.22 K^{2} l^{2}}-1+3.1 \times 10^{-4} R^{2} h^{2}\right] x
$$

$$
-\left[1+: 17 K^{2} A^{2}\right]=0
$$

where the density of 49 in $\mathrm{gm} / \mathrm{cm}^{3}$ is

$$
\rho_{49}=\frac{239 \times 4}{9 \times 1090} x=.00977 x
$$

In fig, 1 is plotted the critical mass of 49 in a sphere of water as a function of the density of 49 。 FiE: 2 is the critical mass of 49 as a^{-}
function of the radius of the sphere. Fig. 3 is the critical mass $/ \mathrm{cm}$ of 49 as a function of the radius of the infinite cylinder container:. Fig. 4 is the critical mass/ cm ${ }^{2}$ of 49 as a function of the thickness of the slab of mixture 。 Fig. 5 gives mass of 49 contours for spherical geometry on a $\rho-$ plot.

$$
\begin{aligned}
& \text { Heavy Water } \rho \text { assumed }=\frac{10}{9} \\
& \sigma_{a t}(M)=0.057 \times 10^{-24} \quad \xi \sigma_{s f}(M)=2.21 \times 10^{-24} \mathrm{~cm}^{2}, \quad \sigma_{s t}(A)=7.53 \times 10^{-24} \\
& \angle_{0}^{2}=1840 \mathrm{~cm}^{2}, \quad \tau=130 \mathrm{~cm}^{2} . \quad \tau=50 \mathrm{~cm}^{2} .
\end{aligned}
$$

This choice of constants gives

$$
\begin{aligned}
& 3.45 \times 10^{-5} e^{-138 K^{2} T} x^{2}+\left[2.2 e^{-K^{2}}-1+2.27 \times 10^{-3} K^{2} \tau\right] x \\
& -\left(1+15 K^{2} \tau=0\right. \\
& \rho_{4} \gamma=\frac{239 \times .0057}{7 \times 1090} x=1.39 \times 10^{-4} \times
\end{aligned}
$$

Fig. 6 gives the critical mass of $\dot{4} 9$ as a function of its density in heavy water.

Graphite
(fAGOT: $\rho=1.62$)
$\sigma_{a t}(M)=.00493 \times 10^{-24} \mathrm{cms}^{2}, \quad \xi \sigma_{s f}(M)=.55 \times 10^{-24} \mathrm{csun}^{2}$.

$$
\sigma_{S t}(M)=48 \times 10^{-24} \mathrm{~cm}^{2}, \quad L_{0}^{2}=2520 \mathrm{~cm}^{2}, T=370 \mathrm{cac}^{2}, T=133 \mathrm{~cm}^{2} .
$$

$$
\begin{aligned}
& \text { These values give } \\
& \left.\qquad 2 \times 10^{-4} e^{-1.36 K} K^{2} T x^{2}+\left[2.2 e^{-R^{2} T}-1+1.4 \times 10^{-3} K^{2} T\right] \times-/ 1+6 k i\right] 49 \\
& \rho_{49}=\frac{239 \times .00493 \times 162}{12 \times 1090} x=146 \times 10^{-4} \times
\end{aligned}
$$

Fig. 7 gives the critical mass of 49 as a function of its density in graphite.

Chain Reaction

An amount of 94 greater than the critical mass will not be chain reactive when diluted with a sufficiently large quantity of water. As the water evaporates away, e concentration will however be reached at which the effective multiplication factor will exceed unity by a small amount. The neutron density will thereupon increase from a negitible value to a figure sufficient to produce a very appreciable liberation on heat. The recoiling fission frepments will impart their energy to the
veter in a time of the order of magnitude of 10^{-11} sec., short in comparison with the time of reproduction of one generation, $\sim 10^{-4}$ sec. Consequently the rate of rise of the temperature of the water will.res and at once to the level of neutron density. As the temperature rises, the density of the water decreases. The leakage of neutrons is cons $\begin{gathered}\text { quently }\end{gathered}$ increased. The effective multiplication factor drops to unity. The neutron density becomes stationary for a short interval. He it is at this moment being produced at its maximum rate. The multiplication factor to fall and drops appreciably below unity. The neutron density dies off only after a finite time interval. An additional temperature rise occurs on this account, fit the end of the first act the temperature of the water hes risen by a finite amount, the multiplication factor is less than unity by a finite amount, and the neutron density is again negligible.

The water will begin to cool. The density will increase to tia point where there will be a second, smaller, surge of activity, a reheating of the solution, end a repetition of the first cycle of everice. The second cycle will be followed by a third, a fourth, etc., each of decreasing amplitude. Finally the solution will settle down to a steady state. For the given composition there will be a critical density for which the effective muitipiication factor will be exactly unity. Corresponding to this density will be a critical temperature at which tho solution will maintain itself. Whatever heat is lost owing to the temperature difference between water and surroundings will constantly be made up by the nuclear reaction. The solution acts as a thermostat. Well insulated, it produces a negligible amount of heat. Penetrated by ducts arranged to give the maximum possible transfer of heat to a suitable cooling fluid, the solution acts as a porer plant whose output varies over a range whose limit is set entirely by the possibilities for hat transfer. In order that the working temperature should remasia constant in such a low temperature plant, it is naturally necessary whit further evaporation of the water should be prevented and consequent ar that tine solution should be enclosed.

When the solution is not enclosed, further evaporation will take place as time cos on. The concentration of 94 will slowly increase, the critical temperature will rise, More he at will be transferred to the surroundings per unit of time. Consequently the nuclear reaction will have to proceed at a higher rate in order to maintain the temperature at the critical level.

After a time determined entirely by the rate of evaporation, the solution will reach the boiling point ana bubbles will form. The rate of evaporation will thereby be oreatly increased. In contrast to the previously discussed stage of events, where the rate of evaporation, and consequently the rate of temperature rise, de, ended upon such externel factors as air velocity ana humidity, the present occurences
 will run through their course in a mach shorter time. The nuclear reaction will be maintained ut a level to balamee the losses of heat through evaporation by adjustment of the density, as before. Hov,
however: the density mill be controlled, not by the temperature, winch remains constant, but by the proportion of bubbles to liquid. Let the solution lie at the bottom of a large vessel. If the opening at the top is large, the rate of loss of heat through evaporation will be Great. The solution will quickly boil down. The concentre tion of 94 will rise to a level where the solution is no longer chain reactive and the boiling will stop, the solution cool off. If the opening at the top of the container is small. the same chain of events will require a longer stretch of time. In both cases the total liberation of nuclear energy will be the same and pill equal the latent heat of evaporation of tine excess water. To liberate a really large quantity of heat, the system will be designed to avoid any net loss of water. Fresh water may be pumped in at the bottom and steam removed at the top cf on otherwise closed container. Such a boiler is safe, for operation will cease shortly after the flow water is cut off. Even if the steen outlet is blocked by mistake, an explosion mill not necessarily cecur', Boiling indeed will soon cease but evaporation will build up the vapor pressure or water in the free space at the upper pert of the container. The resulting increase in concentration of the solution will suffice to stop the chain reaction before the pressure reaches a dangerously high level, provided that the vessel is sufi' fiajentiy ins jo

Quiaticative relationsinips between critical mass and density ard induced radioactivity will supplement the foregoing qualitative picture of a chain reaction in an aqueous solution of 94. When boiling is possible, the solution by frothing $7 i l l$ adjust its density so that the affective factor of multiplication is very close to unity for the given relative concentrations of 94 and moderator. A decrease of density by the factor f from the normal value ρ_{0} to the new value of ρ_{0} / f will increase ε il mean froe paths by the same factor f. The now solution will have the same leakage, and therefore the same effective multiplicalion factor as the system of normal density. if all its linear dimensions are increased by the factor f. The critical mass required for a chain reaction in the frothing solution will therefore be greater than that for the normal solution by the factor $(I / f) f^{3}=f^{2}$, provided that the boiling expend: all the dimensions of the mass by the same factor, Actually we will le more interested in the case where the liquid lies in a rigid tank whoso diameter is much greater than the depth of the solution. fine neut. onic. leakage will be independent in first approximation of the diereter. Consequently a solution whose density is low by the factor f wi .l only have to have a depth grouter by the same factor f if it is to hr.ve the same effective multiplication factor as a solution of normal iansity. The critical masses of the two solutions will be related by the factor f / f or in other words will be equal. Consequently the stabilizing action of the frothing is not apparent in the first approximation. Actually a shallow solution of normal density, having appreciably more than the critical mass, will have to boil up until its de th is comparable with the diameter of the tank before the neutron density reaches equilibrium. Iritroauce the symbols

> k, multiplication factor
> f, effective misation area
> D_{s} diameter of tank
> $h_{2} h^{\prime}$, height of normal, of boiling solution
> $r=h^{\prime}$ sh, critical mass for boiling solution relative to \quad normal solution.

Then the condition for a stable reaction gives the condition

$$
(408096 / D)^{2}+(\pi / h)^{2}=(k-1) / \mathscr{C}
$$

for the normal solution, and for the frothing solution

$$
(4.8096 / D)^{2}+(\pi / h \prime)^{2}=(k-1) / f f^{2}
$$

Multiplying through the first equation by ($h \cdot d / 4.8096 f$) ${ }^{2}$, the second by ($\left.h^{\prime} D / 4.8096\right)^{2}$, equating left hand numbers and solving for h, we find

$$
h \cdot=\left\{\left(r^{2}-1\right)(\pi D / 4 \cdot 8096)^{2}+r^{2} h^{2}\right\} \quad \frac{1}{8}
$$

as relation connecting effective height of the frothing solution with the ratio, r, of its mass to the mas of a solution of normal density and the same concentration ratio, which is sufficient in amount just to be on the verge of reacting when lying in a vessel of the diameter D filled to the height h. When D is very large in comparison with h, and the factor, r, of excess over the critical mass for normal density is considerable, the solution will boil up to a height, h ', approximately equal to $0.654{ }^{1} \mathrm{rD}$, provided that the tank is not closed.

When free boiling lis possible, the total energy released by nuclear fission will be very little more then that required to evaporate off the excess water and raise the concentration of 94 to a stable value. Under these conditions the integrated dosage due to exposure to gama rays can easily be estimated in order of magnitude. of the energy release of $n 200 \mathrm{Mov}$ per fission, an amount of the order of 15 Mev will be given out in the form of gamma radiation. For every liter of water boiled away, the integrated dosage in roentgen units at an unshielded point at a distance of x centimeters will be given by the product of the following factors:

1000 grams per liter
540 calories per gm, latent heat of evaporation
4.18×10^{7} ergs/calorie
$15 / 200$ fraction of energy in gamma rays
$1 / 4 \pi x^{2}$ fraction passing through $1 \mathrm{~cm}^{2}$ at $\pi \mathrm{cm}$
3.5×10^{-5} fraction of energy of one quantum converted into electronic energy inicentimeter (factor nearly independent of energy from 2 Mev to 70,000 iv).
$300 / 32$ e.s.u. of ion pairs produced by 1 erg when 32 ev will make one ion pair.

Multiplication gives $4.4 \times 10^{7} /(x \text { in } \mathrm{cm})^{2} \theta_{0}$ sou. of charge per cm^{3} of normal air at a distance of x om, per Inter of water boiled away. An unshielded individual 10 meters from a solution from which 1 liter of water boils away without warning will get an integrated dosage of 44 roentgen units. This figure in itself is not considered dangerous. Absorption of gama rays in the solution will reduce the effect. However, neutrons escaping from the unit will add somewhat to the dosage.

$$
\begin{aligned}
& 1-(K \ell)^{-1} \operatorname{tarc} \tan \pi \ell \div(K \ell)^{2} / 3 \\
& \text { ven } \pi \rho / \text { thickness of slab } 2 / 3 \text {. }
\end{aligned}
$$

in terms of the nutations used above. With a value of 7 cm for the quantity l, and with a depth of solution corresponding to the critical region in Fig 4, we estimate that $1 / 20$ of the f as seconder neutrons will escape with an average evergy of the general order of magnitude of 1 Mev. To, compute the dosage, we shall take the physiological effects of gamma rays and neutrons to be equal if equal amounts of energy are liberated per $\mathrm{cm}^{3}{ }^{2} \mathrm{of}^{2}$ body tissue - or water - an assumption that may be in error by as much as a factor of 3. Then when the energy of fission evaporates one lifter of water, the effect of the neutrons translated into roentgen unite will be given roughly by the product of the following factors:

1000 gms per 11 ter
540 calories dor em
4.18×10^{7} args/oalorie
$1 / 202.2 \frac{1}{200 \mathrm{Mev}} \mathrm{Me}$ fraction of energy carried by energetic
$1 / 4 \pi x^{2}$, fraction striking cm^{2} at x ($\nu=2$ o 2)

$$
25 \times 10^{-4} \mathrm{~cm}^{-1} \mathrm{~m}^{2}\left(\frac{\mathrm{~m}^{2}}{16+2} 6.02 \times 10^{23} \mathrm{gm}^{-1}\right)\left(0.001293 \mathrm{~km} / \mathrm{cm}^{3}\right) \cdot\left(3 \times 10^{-24} \mathrm{~cm}^{2}\right)
$$

approximately average fraction of energy converted into energy of recoil protons per om of path of a neutron through water vapor of same density as standard air.
$300 / 32$ e.s.u. of ion pairs produced by one org when 32 of will make one ion pair.

Multiplication gives $2.4 \times 10^{6} /(\mathrm{x} \text { in } \mathrm{cm})^{2}$ as ord order of magnitude estimate for the number of equivalent roentgens of dosage produced by the neutrons emitted during the boiling away of one liter of water. The effect of the slow neutrons should not increase the resuit by a factor more than two. We conclude that the effect of the neutrons is less important than that of the gamma rays.

The radioactive gases carried out by the boiling process form a third source of changer. However, the amount of such activity in solution is very much less in the present instance than it is in the case of uranium dissolved up after a long Irradiation in a plant for the rapid production of 94. Consequently the problem of protection cen be solved by known end apparently quite adequate precautions:

9

呈
唓

 zin）

