NUCLEAR SCIENCE and ENGINEERING

A JOURNAL OF THE AMERICAN NUCLEAR SOCIETY

EDITOR

DIXON CALLIHAN, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

VOLUME 31, NUMBER 3, MARCH 1968

Copyright ©1968, by American Nuclear Society, Inc., Hinsdale, Illinois 60521

Low-Enrichment Uranium-Metal Exponential Experiments

C. G. Chezem*

Los Alamos Scientific Laboratory, Los Alamos, N. M 87544

and

R. G. Steinke**

Department of Nuclear Engineering, University of Wisconsin Madison, Wisconsin 53706 Received October 27, 1967

A study of low average enrichment, uranium-metal exponential columns has been performed at the Los Alamos Scientific Laboratory. The source reactor, materials, equipment, and procedures were essentially the same as used in the earlier natural-uranium experiment.¹

Unreflected 21-in.-diam uranium cylinders of 6.53 and $9.12\%^{235}$ U enrichment were investigated during the Summer of 1966.² These efforts were extensions of work reported in 1965 on a 4.29%-enriched column.³ The enriched col-

*Present address: USAEC, Office of Safeguards and Materials Management, Washington, D.C. 20545.

**Present address: Rackham Graduate School, Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48105.

¹C. G. CHEZEM, "A Uranium Metal Exponential Experiment," Nucl. Sci. Eng., 8, 652 (1960).

²R. G. STEINKE, "Spectral Indices of 6.53% and 9.12%²³⁵U Enriched Uranium Metal Exponential Experiments," Los Alamos Scientific Laboratory Report (to be published).

³R. G. STEINKE, "Spectral Indices of a 4.29% ²³⁵U Enriched Uranium Metal Exponential Column," LA-3406-MS, Los Alamos Scientific Laboratory (September 1965). umns were formed by interleaving natural-uranium plates, machined from cast stock, with uranium plates enriched to an average of 93.29% ²³⁵U, which were machined from rolled stock. The overall column density, allowing for stacking voids, was estimated to be $18.70 \pm 0.05 \text{ g/cm}^3$.

Those results that are considered best values are tabulated on the preceding page.

Interpolation of a buckling vs percent-enrichment curve obtained from the above data by a quadratic, least-squares analysis implies a 235 U enrichment of (5.26 ± 0.11) % for infinite critical mass. Backscattering perturbations in the enriched assemblies were not as pronounced as in the natural-uranium system¹ and were ignored.

ACKNOWLEDGMENTS

Work performed at the Los Alamos Scientific Laboratory under the auspices of the USAEC.

TABLE I

Average Enrichment %	Length of Column (in.)	Method of Observation	Buckling (cm ⁻²)	σ, (²³⁵U) σ, (²³⁸U)	<u>σ</u> ,(²³⁷ Np) <u>σ</u> ,(²³⁸ U)	$\frac{\overline{\sigma}_{I}(^{239}\mathrm{Pu})}{\overline{\sigma}_{I}(^{238}\mathrm{U})}$
9.12	25.28	Foil Activation (,3)	0.0054 ± 0.0002	27 ± 1		
6.53	32.72	Foil Activation (,})	0.0022 ± 0.0004	39 ± 2		
4.29	31.4	Foil Activation (₇) Fission chambers	-0.0018 ± 0.0003	57 ± 6 60.1 ± 3.0	$\begin{array}{c} 10 \ 7 \pm 0.5 \\ 11 \ 3 \pm 0 \ 5 \end{array}$	1 14 ± 0 06
(0.7 2	Chezem ¹	Chezem	-0.0119 ± 0.0005	239 ± 7	$16.0 \pm 0 1^{a}$	250 ± 16)

"Corrects an arithmetic error in Table VI of Chezem."