Детектирующая система сцинтилляционного мюонного годоскопа с оптоволоконным светосбором

И.И. Астапов, Н.В. Ампилогов, Н.С. Барбашина, В.В. Борог, А.Н. Дмитриева, К.Г. Компаниец, А.А. Петрухин, А.И. Терегулов, Д.А. Тимашков, Д.В. Чернов, В.В. Шутенко, И.И. Яшин

Национальный исследовательский ядерный университет «МИФИ»; IIAstapov@mephi.ru

Аннотация

Приводится описание детектирующей системы нового сцинтилляционного мюонного годоскопа (СцМГ) с оптоволоконным светосбором, предназначенного для мониторинга активных процессов в гелиосфере, магнитосфере и атмосфере Земли. Подробно рассмотрена структура СцМГ и конструкция его основного элемента – базового модуля. Обсуждаются результаты тестирования детектирующей системы прототипа базового модуля.

Введение

Одним из новых и перспективных направлений в солнечно-земной физике является мюонная диагностика активных процессов в атмосфере Земли и гелиосфере с целью их непрерывного мониторинга и раннего обнаружения. Метод мюонной диагностики основан на регистрации и анализе в режиме реального времени пространственно-временных вариаций проникающей компоненты вторичных космических лучей – мюонов. Их поток генерируется в верхней атмосфере в результате взаимодействий первичных космических лучей (ПКЛ) с ядрами атомов воздуха и несет информацию, с одной стороны, об активных процессах в гелиосфере, которые модулируют поток ПКЛ, а с другой стороны – о процессах геофизического происхождения, влияющих на интенсивность вторичных космических лучей.

Основным подходом к решению задач мюонной диагностики является одновременная регистрация мюонов с различных направлений (годоскопический режим). Для его реализации необходимы широкоапертурные координатно-трековые детекторы большой площади – мюонные годоскопы, способные в режиме реального времени регистрировать и определять параметры трека каждого мюона, пересекающего установку. Эти детекторы должны обладать большой площадью (> 10 м²), достаточной для обеспечения требуемой статистики для всех направлений прилета мюонов, а также хорошим угловым и пространственным разрешением. Кроме того, эффективность работы детектирующей системы таких годоскопов должна быть нечувствительна к изменениям метеопараметров.

Идеи, заложенные в методе мюонной диагностики, были опробованы на первых в мире мюонных годоскопах, созданных в НИЯУ МИФИ – ТЕМП (1995 г.) [1] площадью 9 м² и угловым разрешением ~ 2° и УРАГАН (2005 г.) [2] общей площадью ~ 45 м² и угловым разрешением ~ 1°. С помощью данных годоскопов были продемонстрированы возможности мюонной диагностики по раннему обнаружению и изучению активных процессов, происходящих в атмосфере и околоземном пространстве [3 – 4]. Однако обе установки создавались на базе уникальных детекторов, которые первоначально предназначались для решения задач физики высоких энергий, поэтому их детектирующие системы не были оптимизированы для решения задач мюонной диагностики.

1 Сцинтилляционный мюонный годоскоп нового типа

На основе опыта эксплуатации ТЕМП и УРАГАН были выработаны требования, которым должны удовлетворять координатно-трековые широкоапертурные годоскопы: площадь регистрации > 40 м²; угловое разрешение < 2°; эффективность регистрации трека мюона детектирующим элементом > 99 %; модульный принцип построения, технологичность, удобство монтажа и транспортировки, простота и дешевизна эксплуатации.

Исходя из данных требований, был разработан новый сцинтилляционный мюонный годоскоп. Он состоит из отдельных супермодулей (СМ), каждый из которых представляет собой самостоятельный

детектор площадью ~ 11 м². Детектирующая система каждого СМ может иметь несколько (не менее двух) двухслойных координатных плоскостей, закрепленных на общей раме, обеспечивающей возможность его вращения вокруг горизонтальной ($\pm 45^{\circ}$) и вертикальной (360°) осей. Конструкция СцМГ с двумя координатными плоскостями представлена на рис. 1. Расстояние между плоскостями 1 м. Функционально все СМ являются одинаковыми детекторами, что обеспечивает возможность объединения их статистик.

Рис. 1. Двухплоскостной супермодуль сцинтилляционного мюонного годоскопа.

В качестве базовых элементов годоскопа используются длинные сцинтилляционные полоскистрипы (10.6 мм × 26.3 мм × 3460 мм, AMCRYS-H, Украина), изготовленные из полистирола с добавлением 2 % р-терфенила и 0.02 % РОРОР. Для улучшения светосбора стрипы покрыты диффузно отражающим покрытием из смеси полистирола и TiO₂. В середине одной из больших граней каждого стрипа сделана канавка (глубиной 2 мм, шириной 1.6 мм) для вклейки оптическим клеем (BC-600, Saint-Gobain, США) спектросмещающего оптического волокна (файбер, Kuraray Y11-175 1 mm, Япония). Один конец оптоволокна каждого стрипа заведён на соответствующий пиксель 64-анодного ФЭУ H7546 (Hamamatsu, Япония). При прохождении заряженных релятивистских частиц через стрип образуется сцинтилляционная вспышка, фотоны которой частично попадают в спектросмещающее оптоволокно и, переизлучаясь в зеленую часть спектра, доходят до ФЭУ. Обладая большой длиной ослабления, файбер позволяет использовать относительно недорогой сцинтиллятор, что существенно снижает стоимость годоскопа.

1.1 Базовый модуль детектирующей системы СцМГ

Координатная плоскость детектора состоит из двух слоев со взаимно-ортогональным расположением стрипов для обеспечения измерения X – Y координат трека частицы. Каждый слой плоскости формируется из двух базовых модулей.

Рис. 2. Схема базового модуля СцМГ: слева – схема компоновки БМ; справа – оптический разъем.

Базовый модуль (БМ) является независимой детектирующей системой в общей структуре мюонного годоскопа. БМ представляет собой сборку из 64 стрипов, объединенных светоизолированным корпусом с одним фотоприемником. Схема БМ приведена на рис. 2. Для сборки БМ и придания ему необходимой жесткости использована технология крепления элементов с помощью двухстороннего скотча. На поверхность листа алюминия толщиной 0.8 мм и площадью 1689 × 3460 мм² наклеивается двухсторонний скотч Oramount 1811 (ORAFOL, Германия). На вторую клейкую поверхность последовательно укладываются стрипы. Сверху вся сборка накрывается вторым листом алюминия с двухсторонним скотчем. В результате образуется плотный «сэндвич», позволяющий эффективно светоизолировать и защитить стрипы от повреждений.

Для улучшения светосбора со стрипов производится полировка обоих концов каждого файбера. Торец противоположенный ФЭУ и канавка заклеиваются посеребренным зеркальным скотчем на полиэфирной основе (3М, марки 850, США). Это увеличивает световыход с дальнего от ФЭУ конца стрипа более чем в два раза. Незаклеенные концы оптоволокна от каждого стрипа, располагающиеся в блоке оптической разводки (БОР), сведены в оптический разъём, с помощью которого центры концов файберов позиционируются напротив центров соответствующих ячеек фотокатода ФЭУ (см. рис. 2). Конструкция БОР обеспечивает светоизоляцию и поперечную жесткость всей сборки. Рядом с БОР находится отсек размещения ФЭУ и front-end электроники. Конструктивно все БМ годоскопа одинаковы и взаимозаменяемы.

Угловая точность регистрации треков одиночных мюонов СМ в минимальной конфигурации (2 координатных плоскости, разнесенных на расстояние 1 м) была оценена с помощью моделирования методом Монте-Карло. Полученная оценка углового разрешения на основе геометрической модели СМ составила ≤ 0.5°.

1.2 Система регистрации СМ СцМГ

Блок-схема системы регистрации супермодуля годоскопа представлена на рис. 3. Основу всей считывающей электроники БМ составляет 64-канальная специализированная интегральная микросхема, на которую приходят сигналы со всех анодов ФЭУ H7546. Каждый канал включает в себя предусилитель с регулируемым коэффициентом усиления для компенсации разброса коэффициентов преобразования каналов ФЭУ (которые могут отличаться в 3 раза), зарядочувствительный усилитель и компаратор с регулируемым порогом. Данная микросхема имеет мультиплексированный аналоговый выход.

Сформированные сигналы поступают на программируемую логическую микросхему (FPGA), обеспечивающую формирование триггера первого уровня. При срабатывании хотя бы одного из каналов FPGA передает в центральный блок триггирования и считывания данных (DAQ&Trig. Controller FPGA) триггерный сигнал OR(64). При совпадении сигналов OR от двух слоев каждой плоскости внешняя триггерная система формирует сигнал хранения (Hold) и возвращает его во все FPGA базовых модулей. В этом случае информация о всех сработавших каналах считывается DAQ. Все зарегистрированные события в режиме реального времени реконструируются, анализируются и, при выполнении определенных требований, записываются. С помощью FPGA осуществляется управление настройками 64-канальной микросхемы усилителя-формирователя-компаратора и блоком питания высокого напряжения ФЭУ (HV). На плате ФЭУ также расположена двухканальная система светодиодной (СИД) подсветки, состоящей из контроллера и двух плат управления светодиодами (драйверов), которые обеспечивают необходимую длительность и регулируемую мощность световых импульсов. Система подсветки позволяет измерять диапазон линейности спектрометрического тракта и проводить калибровку ФЭУ. Управление режимом работы контроллера также осуществляет FPGA по командам с компьютера.

Рис. 3. Блок-схема электроники годоскопа.

2 Прототип базового модуля СЦМГ

Для разработки процедур сбора информации, оптимизации конструкции и изучения характеристик сигналов с оптических волокон сцинтилляционных стрипов был создан прототип базового модуля (ПБМ), состоящий из 16 стрипов. В качестве фотодетектора использовался 16-анодный ФЭУ Нататаtsu H8711. Сборка стрипов осуществлялась с помощью описанной выше технологии. БОР прототипа представляет собой тонкую коробку, объем которой разделен на два отсека (см. рис. 4). Отсек, расположенный ближе к стрипам, предназначен для сбора файберов в оптический разъем. Во втором отсеке расположены ФЭУ, front–end электроника и кабели. Измерительная электроника располагалась вне прототипа БМ.

Рис. 4. Блок оптической разводки ПБМ (без крышки).

ПБМ и его элементы тестировались с помощью стенда, схема которого приведена на рис. 5. ФЭУ H8711 тестировался с помощью системы СИД подсветки, состоящей из двух светодиодов с драйверами и двухканального контроллера. Сигналы с ФЭУ анализировались при помощи 4-канального цифрового осциллографа CAEN VME V1729 (12 бит, полоса пропускания 300 МГц, частота дискретизации 2 ГГц). Для каждого канала ФЭУ при U_{HV} = 850 В измерялось распределение выходных сигналов при одноэлектронной подсветке (эффективность регистрации ~10% при пороге 1/3 ф.эл.). Результаты измерений показали, что коэффициенты усиления разных каналов отличаются максимум в два раза, а диапазон линейности составляет около 64 ф.эл. На рис. 6 приведен спектр одноэлектронных сигналов с одного из анодов ФЭУ.

Рис. 6. Одноэлектронный спектр одного канала ФЭУ Н8711.

Измерение длины ослабления света в файбере осуществлялось при помощи подсветки СИД. Файбер общей длиной 5 м подсвечивался светодиодом в различных точках. Свет регистрировался одним из каналов ФЭУ. Полученная зависимость световыхода файбера от расстояния между местом подсветки и фотоприемником показана на рис. 7 (слева). Фитирование осуществлялось с помощью функции:

$$y(x) = A_1 e^{-x/l_1} + A_2 e^{-x/l_2}$$

которая представляет собой сумму двух экспонент: первая экспонента отвечает за поглощение и переизлучение фотонов в файбере, вторая — за ослабление потока переизлученных фотонов. Соответственно, были получены следующие значения $l_1 = (40 \pm 7)$ см и $l_2 = (520 \pm 25)$ см.

Рис. 7. Слева: зависимость световыхода файбера от расстояния между местом подсветки СИД и ФЭУ; Справа: зависимость световыхода стрипов от места расположения телескопа.

Для тестирования отклика ФЭУ при регистрации сцинтилляционных вспышек в стрипах при прохождении через них мюонов использовался калибровочный телескоп (см. рис. 5). Телескоп состоял из двух сцинтилляционных счетчиков с пластинами пластического сцинтиллятора размерами 200 × 100 × 20 мм³, просматриваемыми ФЭУ-85. Для подавления мягкой компоненты использовался свинцовый блок толщиной 5 см, помещенный над нижним счетчиком. На рис. 7 (справа) показаны измеренные зависимости световыхода для трех стрипов в зависимости от месторасположения телескопа и распределение сигналов для стрипа №3. Из приведенных графиков видно, что минимальный световыход с дальнего конца соответствует величине ~ 5 ф.эл., что при пороге компаратора 1/3 ф.эл. соответствует эффективности регистрации мюона > 99%, которая удовлетворяет предъявленному выше требованию.

Заключение

Результаты изучения характеристик созданного прототипа базового модуля показали, что используемые технологии позволяют создать детектирующую систему СцМГ и обеспечить эффективную регистрацию треков одиночных мюонов. В настоящее время в НИЯУ МИФИ осуществляется создание первого супермодуля СцМГ.

Работа выполнена в Научно-образовательном центре НЕВОД при поддержке Министерства образования и науки, ФЦП «Научные и научно-педагогические кадры инновационной России» и гранта ведущей научной школы НШ-5712.2010.2.

Список литературы

- [1] *Борог В.В., Буринский А.Ю., Дронов В.В.* Мюонный годоскоп для исследования солнечно-земных связей в области энергий больше 10 ГэВ. // Изв. РАН. Сер. физ. 1995. Т. 59. № 4. С. 191–194.
- [2] Барбашина Н.С., Кокоулин Р.П., Компаниец К.Г. и др. Широкоапертурный мюонный годоскоп большой площади УРАГАН. // ПТЭ. 2008. № 2. С. 26–32.
- [3] Борог В.В., Гвоздев А.В., Дронов В.В. Изучение волновых процессов, возбуждаемых в атмосфере Земли конвективно-грозовыми явлениями, с помощью мюонного годоскопа. // Изв. РАН. Сер. ФАО. 1999. Т. 35. № 1. С. 24–33.
- [4] *Белоносова О.В., Борог В.В., Симаков П.О.* Методика регистрации Форбуш-эффекта в томографическом режиме. // Изв. РАН. Сер. физ. 2003. Т. 67. № 4. С. 515–518.