

Getting Ready for the LHC: Accelerator, Detectos and Physics

Reisaburo Tanaka (Okayama University)

Asian School of Particles, Strings and Cosmology (NasuLec) Nasu, Tochigi, Sep. 26, 2006

Contents

- 1. Introduction
- 2. LHC Accelerator
- 3. ATLAS/CMS Detector
 - 1. Magnet / Muon Spectrometer
 - 2. Inner Detector (Tracker)
 - 3. Calorimeter
- 4. Physics Performance
 - 1. Supersymmetry
 - 2. Higgs
 - 3. Extra-dimension
- 5. Summary

putting emphases on experimental aspects...

1. Introduction

Brief History of Particle Physics

David Gross David Politzer Frank Wilczek

1970's

Sheldon Glashow Abdus Salam Steven Weinberg

- Rise of the Standard Model theory (Electroweak and QCD)
- Discovery of J/ Ψ (charm quark) in 1974, November Revolution
- Discovery of τ lepton, bottom quark, gluon 1980's
- Discovery of weak W^{\pm} and Z^0 bosons 1990's
- Discovery of top quark
- N_v=3, great success of the Standard Model (gauge theory)
- Discovery of neutrino oscillation

Revolution

Physics in the 21st century ?

Carlo Rubbia Simon van der Meer

Gerardus 't Hooft Martinus Veltman

- Find the Higgs particle (last Standard Model particle unobserved)
- Find the TeV scale new physics. → New Revolution ?

Martin Perl

Never trust a theorist.

High Energy Particle Physics

• Hierarchy problem and Naturalness

• Fine tuning:
$$\frac{M_Z^2}{\Lambda^2} \rightarrow \frac{M_Z^2}{M_{GUT}^2} \approx 10^{-28}$$

- \rightarrow There must be new physics in TeV energy range.
 - Unitarity violation without Higgs above $1 \text{TeV} (W_L W_L \text{ scattering})$
 - Prediction of light Higgs with LEP data ($M_H < 207 \text{ GeV}@95\%\text{C.L}$).
 - (sub-)TeV WIMP dark matter (SUSY-LSP, axion, \tilde{v}_R etc.)

LHC proves directly TeV energy range for the first time!

- Origin of the electroweak symmetry breaking (EWSB)
 - Higgs, compositeness, Higgsless, others?
- Unification with quantum gravity, Space-Time structure
 - (super)string theory

Standard Model Lagrangian

R. Barbieri, hep-ph/0410223

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\psi}D\psi \\ &+ \psi_i \lambda_{ij} \psi_j h + h.c. \\ &+ |D_{\mu}h|^2 - V(h) \\ &+ \frac{1}{M} L_i \lambda^{\nu}_{ij} L_j h^2 \text{ or } L_i \lambda^{\nu}_{ij} N_j \end{aligned}$$

Experiments

The gauge sector LEP, SLC, Tevatron

The flavor sector **B factories**

The EWSB sector LHC, ILC(CLIC)

The v-mass sector v factories

Physics at LHC - main goals for energy frontier machine

Probe the origin of the ElectroWeak Symmetry Breaking (EWSB)
 Search for new physics beyond the Standard Model

Electroweak Symmetry Breaking (EWSB)

Extended Gauge Symmetry

Little Higgs, Higgsless, Left-Right Symmetric Model Higgs-Gauge Unification

Exotics: Compositeness, Lepto-quarks, Monopole ...

2. LHC Accelerator

©CERN Photo

f_i: PDF(Parton Distribution Function)

LHC Accelerator

$$L = \frac{\gamma f k_b N_p^2}{4\pi\varepsilon_n \beta^*} F$$

 $\begin{array}{lll} f & revolution frequency \\ k_b & no. of bunches \\ N_p & no. of protons/bunch \\ \epsilon_n & norm transverse emittance \\ \beta^* & betatron function \\ F & reduction factor xing angle \end{array}$

Magnetic Field p (TeV) = 0.3 B(T) R(km) For p= 7 TeV, R= 4.3 km ⇒ B = 8.4 T

Beam-beam tune shift
$$\xi = \frac{Nr_p}{4\pi\varepsilon_n}$$

Energy at collision Dipole field at 7 TeV Luminosity Beam beam parameter DC beam current Bunch separation	Ε Β L ξ I _{beam}	7 8.33 10 ³⁴ 3.6 0.56 24.95	TeV T cm ⁻² s ⁻¹ 10 ⁻³ A ns
No. of bunches No. particles per bunch Normalized transverse	K _b N _p	2835 1.1 3.75	10 ¹¹
emittance (r.m.s.) Collisions	Cn	0.70	μπ
β-value at IP	β*	0.5	m
r.m.s. beam radius at IP	σ^*	16	μm
Total crossing angle	φ	300	<i>µ</i> rad
Luminosity lifetime	τ_{L}	10	h
Number of evts/crossing	n _c	17	
Energy loss per turn		7	keV
Total radiated power/beam		3.8	kW
Stored energy per beam		350	MJ

1232 SC Dipole Magnets (8.36Tesla, 15m length, 35tonne) installation will finish in March 2007.

LHC Start-up Scenario

Schedule (CERN Council, June 23, 2006)

Oct. 2006	 Last magnet delivery
Dec. 2006	- Conclude magnet testing

- Mar. 2007 The last magnet installation
- Aug. 2007 Machine closure ready for commissioning
- Nov. 2007 2 months commissioning@0.9TeV, L=10²⁹ → Machine/Detector/QCD bkg/SM

winter

- Commissioning without beam

Spring-Summer 2008 - First Physics RUN@14TeV !

Data collection will continue until a pre-determined amount of data has been accumulated, allowing the experimental collaborations to announce their first results.

Integrated Luminosity O(few fb⁻¹)

Nov.-Dec. 2007 Commissioning

at E_{CMS}=900GeV

http://lhc-commissioning.web.cern.ch/lhc-commissioning/

- 3 weeks beam commissioning
 - Essentially single beam, low intensity for the most part
- 3 weeks collisions
 - Low intensities initially, with staged increase to an optimistic $156 \times 4 \times 10^{10}$
 - hope to push over 10²⁹ cm⁻²s⁻¹

k _b	43	43	156	156
i _b (10 ¹⁰)	2	4	4	10
b* (m)	11	11	11	11
intensity per beam	8.6 10 ¹¹	1.7 10 ¹²	6.2 10 ¹²	1.6 10 ¹³
beam energy (MJ)	.06	.12	.45	1.1
luminosity	10 ²⁸	7.2 10 ²⁸	4.8 10 ²⁹	3 10 ³⁰
event rate ¹ (kHz)	0.4	2.8	10.3	64
W rate ² (per 24h)	0.5	3	11	70
Z rate ³ (per 24h)	0.05	0.3	1.1	7

Assuming 450GeV

- 1. inelastic cross section 40mb
- 2. $W \rightarrow lv$ cross section 1nb
- 3. $Z \rightarrow ll$ cross section 100pb

Staged commissioning plan for E_{CMS} =14TeV

3. ATLAS/CMS Detector

The ATLAS Collaboration

35 nations 158 institutions ~1650 scientists

Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, Bern, Birmingham, Bologna, Bonn, Boston, Brandeis, Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, Casablanca/Rabat, CERN, Chinese Cluster, Chicago, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, INP Cracow, FPNT Cracow, Dortmund, TU Dresden, JINR Dubna, Duke, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Irvine UC, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, Mannheim, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, FIAN Moscow, ITEP Moscow, MEPhl Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Naples, Naruto UE, New Mexico, Nijmegen, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Ritsumeikan, UFRJ Rio de Janeiro, Rochester, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, Southern Methodist Dallas, NPI Petersburg, Stockholm, KTH Stockholm, Stony Brook, Sydney, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Toronto, TRIUMF, Tsukuba, Tufts, Udine, Uppsala, Urbana UI, Valencia, UBC Vancouver, Victoria, Washington, Weizmann Rehovot, Wisconsin, Wuppertal, Yale, Yerevan

CMS (Compact Muon Spectrometer)

Magnet / Muon Spectrometer

The ATLAS Detector Nov.2005

Muon Momentum Resolution and p_T distribution

ATLAS

Calibration & alignment are critical at high p_T

Inner Detector (Tracker)

PIXEL

Barrel:	1456 modules
Endcap:	2 x 144 modules
	1744 modules

One module:46.080 pixelsTotal:~80.000.000 pixels

Hits per track: 3

Single Pixel module All modules have same layout

A view of 3 completed discs of one Endcap²⁷

SCT (Silicon Strip)

Barrel: 2112 modules Endcap: 2 x 988 modules 4088 modules

One module: 2 layers x 768 channels ~ 6.000.000 channels Total:

Channel size: 80µm x 120 mm 16μm x 580 μm **Resolution**:

Hits per track: Barrel: 4 Endcap: 9

Barrel module

One module has 2 layers with 40 mrad stereo angle

4 different module layouts (3 endcap, 1 barrel)

SCT EndCap

Fully assembled SCT Barrel

TRT (Transition Radiation using straw tubes)

TRT Barrel detector

Barrel: 96 modules Endcap: 28 modules 2

Total: 300.000 straw tubes

Channel size:
Resolution:4mm x 740 mm
170 μm (perpendicular
to wire)Hits per track:36

radiator: poly-propylene gas mixture: XeCO₂O₂ (70+27+3%)

Alignment is an issue !

ID consists of 1744 Pixel, 4088 SCT and 124 TRT modules

- \Rightarrow 5956 modules x 6 DoF ~ 35.000 DoFs
- \Rightarrow This implies an inversion of a 35k x 35k matrix

1st LHC Detector Alignment Workshop CERN 4-6 Sep.

Supported by LCG & CERN PH

Workshop Scope

- Mathematical & Statistical Methods
- Lessons from previous & running Experiments
- Alignment Software Infrastructure
- Alignment Plans for the LHC Experiments

Invited Speakers

- Volker Blobel(Algorithm)
- •Rudi Fruehwirth(Algorithm)
- •Dave Brown(ALEPH/BABAR)
- •Claus Kleinwort(H1/Zeus)
- Aart Heijboer(CDF)
- •Spyridon Margetis(STAR)
- Fred Wickens(SLD)

SCT(SemiConductor Tracker) barrel cylinders insertion into TRT(Transition Radiation Tracker) Feb.17, 2006

Experimental physicist's daily life

SCT and TRT barrel test

First cosmic events in SCT+TRT

May 2006

Calorimeter

EM Calorimeter Performance

Physics benchmark process: H→γγ, 4e[±]

Good Detector ... can measure 4-momentum (E,**p**) or (t,**x**). Example: Kamiokande ATLAS Liquid Argon Calorimeter can do this !

—	Energy resolution	σ/E=10%/√E ⊕ 200(400)MeV/E ⊕ 0.7%
_	Angular resolution	4-6 mrad/√E (φ-direction, Middle Layer)
		50 mrad/ \sqrt{E} (η -direction, Strip+Middle Layer \rightarrow Z vertex measurement)
_	Time resolution	100 ps (1ns at 1GeV)
_	Particle Identification	e [±] /jets, $\gamma/\pi^0 > 3$ at E _T =50GeV
_	Linearity	< 0.1%
_	Dynamic range	20MeV(can detect MIP μ s) - 2TeV(signals from extra-dimension etc.)

ATLAS Liquid Argon Calorimeter

- Pb/Liq.Ar sampling calorimeter (accordion geometry)
- Azimuthal angle= 2π (no crack), covers pseudo-rapidity η <3.2 (FCAL <4.9)
- Liquid Argon is intrinsically radiation-hard.

 $H \rightarrow \gamma \gamma$

 $\frac{\sigma_E}{E} = \frac{10\%}{\sqrt{E}} \oplus \frac{200(400)\text{MeV}}{E} \oplus 0.7\%$

better uniformity and angular

ATLAS

resolution

 $\sigma_{\theta} = \frac{50 \text{mrad}}{\sqrt{E}}$

$\frac{\sigma_M}{M} = \frac{1}{2} \left[\frac{\sigma_{E_1}}{E_1} \oplus \frac{\sigma_{E_2}}{E_2} \oplus \frac{\sigma_{\theta}}{\tan(\theta/2)} \right]$

CMS

better energy resolution

$$\frac{\sigma_E}{E} = \frac{2.7\%}{\sqrt{E}} \oplus \frac{155(210)\text{MeV}}{E} \oplus 0.55\%$$

ATLAS Liquid Argon Calorimeter

Performance tests B.Aubert et al (RD 3 Coll.), CERN/DRDC/90-31 B.Aubert et al. NIM A 309 (1991) 438-449

The calorimeter electronic chain

only. Long undershoot signal.

CMS Electromagnetic Calorimeter PbWO₄ Scintillator

Crystals commonly used at high energy physics experiments

	NaI(Tl)	CsI(Tl)	CsI	BGO	PbWO
Density (g/cm ³)	3.67	4.51	4.51	7.13	8.28
$X_0 \ (\mathrm{cm})$	2.59	1.85	1.85	1.12	0.89
R_M (cm)	4.8	3.8	3.5	2.3	2.2
Decay time (ns)	230	680	6	60	5
slow component			35	300	15
Emission peak (nm)	410	560	420	480	440
slow component			310		
Light yield $\gamma/{ m MeV}$	4×10^4	5×10^4	4×10^4	8×10^3	1.5×10
Photoelectron yield	1	0.45	0.056	0.09	0.013
relative to NaI					
Rad. hardness (Gy)	1	10	10^{3}	1	10^{5}
		karalan di			

Avalanche Photodiode (APD)

Gain variation

Gain ~ 50 (PIN photodiode G=1) Excess noise factor ~ 2 F = kM+(1-k)(2-1/M) $\frac{dM}{dT} = -M \times 2.2 \% / C^{o}$ Voltage dependence

 $\frac{dM}{dV} = M \times 3.15 \% / V$

Quantum Efficiency

Avalanche Photodiode (APD)

Summary of APD parameters

Active Area	5x5 mm ²
Operating Voltage @ M=50	~380 V
Capacitance @ M=50	80 pF
Serial Resistance	3 Ω
Dark Current @ M=50	< 10 nA
Excess Noise Factor @ M=50	~2
Quantum Efficiency @ 470 nm	80 %
dM/dV x 1/M @ M=50	3.0 %/V
dM/dT x 1/M @ M=50	-2.4 %/K

Hamamatsu Photonics *Cost ~30 \$ / APD*

All 130k APDs are delivered. Endcap 8000 VPTs

Material description

ATLAS

ATLAS/CMS 0.4~1.4X_0 for $\eta{<}1.5$

ID + Solenoid + Cryostat H $\rightarrow\gamma\gamma$ Photon 30% converts at ID (Photon conversion length = 9X₀/7)

Validation with real data ! $\gamma \rightarrow e^+e^-$ conversion, $\pi^0 \rightarrow \gamma\gamma$ Also important ofr $W \rightarrow e_V$

Energy resolution - constant term

- To observe H→γγ, we need to keep constant term below 0.7%(ATLAS) or 0.55%(CMS).
 ATLAS EM Liq.Ar Calorimeter
 σ_F /E=10%/√E ⊕ 200(400)MeV/E ⊕ 0.7%
- It is hard to achieve constant term below 1% in HEP.
- There are many sources of errors
 - Detector response (geometry), mechanics (absorber thickness)
 - Calibration uniformity
 - Temperature dependence
 - PbWO₄+APD -4.3%/K (Crystal -2.4%/°C, APD -1.9%/°C)
 - Shower leakage
 - Response difference to e/h
 - Radiation damage
 - Etc.

4. Physics Performance

Detector Commissioning and Physics

QCD

- N(N)LO, ME+PS matching
- Parton Distribution Function (PDF)
- Underlying Events
- Jet Algorithms
 - Jet cone vs k_T
 - Jet energy calibration

We need to understand the QCD backgrounds and the detector performance (ex. E_T missing).

Example:

VBF(H $\rightarrow \tau \tau$), ttH for low M_H W/Z+n-jets, tt+n-jets are very important

Event at LHC

A simulated event in ATLAS (CMS) $H \rightarrow ZZ \rightarrow 4\mu$

 \approx 1900 charged + 1600 neutral particles / Beam Crossing

LHC Luminosity Profile

Black Hole

Gravity Scale ~ TeV

Parton collision at d < Schwarzschild radius R_s

→ Black Hole formation

Very large cross section $R_{\rm S} = \frac{1}{\sqrt{\pi}M_{\rm P}} \left[\frac{M_{\rm BH}}{M_{\rm P}} \left(\frac{8\Gamma\left(\frac{n+3}{2}\right)}{n+2}\right)\right]^{\frac{1}{1+n}}$

Parton invariant mass M_{BH}(Black Hole mass)

J.Tanaka et al. Eur.Phys.J.C41(2005) 19-33 C.M.Harris et al. JHEP 0505(2005) 053

main phase ? Black body radiation

- = Hawking radiation or evaporation
- + 'Grey-body' effects (Herwig)
- + Time variation of Hawking temperature emission of particles
 - high multiplicity (a lot of jets)
 - "democratic" emission
 - spherical distribution

Supersymmetry

Large cross section via strong interaction

- $\tilde{q}\tilde{q},\,\tilde{q}\tilde{g},\,\tilde{g}\tilde{g}$
 - $\sigma \approx 3$ pb for m(\tilde{q}, \tilde{g}) = 1 TeV

W

b

 \Rightarrow 100 events/day@10³³ cm⁻²s⁻¹

Easy discovery M~1TeV within 1 month?

 $\widetilde{\chi}_1^0$

α

W

h

$$M_{SUSY} = min(m(\tilde{q}), m(\tilde{g}))$$

20% accuracy(L=10fb⁻¹, mSUGRA) Missing E_{τ} is important (calibrate with $Z \rightarrow II$ +jets)

3 isolated leptons

- + 2 b-jets
- + 4 jets
- + E^{miss}

SUSY event topology (Gravity- mediation + R-parity)

Gluino/squark are produced copiously, **"Cascade decay"** follows after.

- (1) E_T^{miss} should be controlled in multi-jets topology (N>=4).
- (2) High Pt multi-jets are important to estimate SM background contributions and SUSY reconstruction.

N.Kanaya (Kobe)

SUSY inclusive search

Missing E_T has excellent power to distinguish signal from SM background. - but very challenging !

* background is generated by Alpgen MC.

With 100pb⁻¹ data, LHC could say if <1 TeV scale SUSY is accessible to ILC.

LHC - Higgs, squark/gluino

Testing the underlying theory ... not trivial ...

• Determination of SUSY model parametres

C.G. Lester, M.A. Parker, M.J. White, JHEP 0601(2006)080

• SUSY "inverse map" LHC signatures \rightarrow theoretical models

N. Arkani-Hamed et al., hep-ph/0512190

15 dimensional parametrization

1808 LHC observables

MSSM Higgs discovery potential

5 Higgs bosons h,H,A,H[±]

Descrive m_A and $tan\beta$ at tree level.

Larege bbH/A coupling at large tanß H/A \rightarrow $\tau\tau$, $\mu\mu$, bb

 $\mu\mu$ channel is important at the beginning of LHC

: Commissioning $\mu\mu$ < $\tau\tau$ < bb

Can observe charged Higgs via $gb \rightarrow tH^{-}$ at $tan\beta > 10$

Cover whole $(m_A, \tan\beta)$ plane for MSSM Higgs with L=30fb⁻¹ data

Light Higgs Boson (M_H<140GeV)

ttH (H→bb)

σxBr≈300fb

Very important for top-Yukawa coupling

Backgrounds (needs @ 5-10% level precision)

b-tag efficiency ε_b =60%, R_i(uds)~100

ttij, Wijijij, WWbbjj etc.

combinatorials (4-b's)

Vector Boson Fusion VBF (H→ττ) σxBr≈300fb Need forward jet reconstruction & centra jet veto. Yukawa coupling meas., No b-tag ! Backgrounds: Z+jets (Drell-Yan)

W/Z+n-jets, ttbar+n-jets studies are very important.

Higgs J^{PC}=0⁺⁺

 $H \rightarrow ZZ \rightarrow 4$ lepons (S/B>3)

Ex. $\pi^0 J^P = 0^- \leftarrow$ double Dalitz decay

 \Rightarrow Angle between decay planes of two Z's from Higgs decay

C.A. Nelson, Phys.Rev.D37(1988)1220,

C.P. Buszello et al., Eur.Phys.J. C32(2004)209

Also studies VBF H→WW→IvIv spin correlation, ttH/ttA etc.

S.Y. Choi et al., Phys.Lett. B553(2003) 61

Yukawa coupling

$$g_{\rm f\bar{f}H} = \frac{m_{\rm f}}{v}$$
 (v = 246 GeV)

Higgs-W/Z coupling

$$g_{\rm VVH} = 2 \frac{M_{\rm V}^2}{v} \quad g_{\rm VVHH} = 2 \frac{M_{\rm V}^2}{v^2}$$

Higgs boson self-coupling $g_{\text{HHH}} = 3 \frac{M_{\text{H}}^2}{v}$ $g_{\text{HHHH}} = 3 \frac{M_{\text{H}}^2}{v^2}$

Non-linear Yukawa couplings ⇒ direct evidence of physics beyond the Standard Model.

Example. In MSSM, $\frac{g_{bbh,\tau\tau h}^{MSSM}}{g_{bbh,\tau\tau h}^{SM}} = -\frac{\sin\alpha}{\cos\beta}, \frac{g_{tth}^{MSSM}}{g_{tth}^{SM}} = \frac{\cos\alpha}{\sin\beta}$

(M. Carena, H.E. Haber hep-ph/0208209)

top-Yukawa coupling plays the key role

67

Yukawa Coupling

Higgs self-coupling

Higgs self-potential

gg→HH→WWWW→*lvjjlvjj* (like-sign di-lepton) L=6 ab⁻¹ (!) ⇒ Significance 5.3(3.8) for M_H=170(200) GeV

 $\Delta \lambda_{\text{HHH}} / \lambda_{\text{HHH}} (\text{stat.}) = \pm 19(25)\%$

 $V = \lambda v^{2} H^{2} + \lambda v H^{3} + \frac{1}{4} \lambda H^{4}$ $M_{H} = \sqrt{2\lambda} v$ trilinear coupling $\lambda_{\text{HHH}}^{\text{SM}} = 3 \frac{M_{H}^{2}}{v}$

quadrilinear coupling $\lambda_{\text{HHHH}}^{\text{SM}} = 3 \frac{M_H^2}{v^2}$

Extra-dimension ADD

ADD

- Large flat compactified extra dimensions
- \Rightarrow conjecture:
- SM particles localized in 4D brane
- gravity propagates in the bulk of higher dimension

$$M_{Pl_{(4)}}^{2} = M_{Pl_{(4+\delta)}}^{\delta+2} R_{C}^{\delta} \equiv M_{D}^{\delta+2} R_{C}^{\delta}$$

δ	M_D^{max} (TeV)	M_D^{max} (TeV)	M_D^{min}
	LL, $30 {\rm fb}^{-1}$	HL, 100 fb $^{-1}$	(TeV)
2	7.7	9.1	~ 4
3	6.2	7.0	~ 4.5
4	5.2	6.0	~ 5

Uncertainty in σ (Z+jets) will lower the reach Reach in M_D for γG

δ	M_D^{max} (TeV)	M_D^{min}	
	HL, 100 fb $^{-1}$	(TeV)	
2	4	~ 3.5	

Ex. Direct Graviton production at LHC

L. Vacavant, I. Hinchliffe, J.Phys. G27 (2001)1839

KK graviton excitations G^(k)

- scale Λ_{π}
- coupling & width determined by:
 c = k/M_{Pl}
- 0.01 < k/M_{Pl} < 0.1
- mass spectrum:
 m_n = k x_n exp(-kπr_c)

Golden channel: $G^{(1)} \rightarrow e^+e^$ spin-2 could be determined (spin-1 ruled out) with 90% CL up to graviton mass of 1720 GeV.

B.C. Allanach, et al., JHEP09(2000)019, ibid.12(2002)039

CMS full simulation study

C. Collard and M.C. Lemaire Eur.Phys.J.C40N5 (2005) 15-21

Tips for young theorists

When building your model to be tested at LHC,

- 1) Mind the reconstruction efficiency
 - can be few % at hadron collider (tens of % at ILC)
- 2) Mind the trigger efficiency (100%@ILC)
 - difficult with all-jets final state, use leptons, b, missing E_{T} etc.
- 3) Mind the total effective cross section
 cross section < 1fb ... mostly hopeless
- 4) Become a good friend with experimentalists (important)
- 5) Follow B.Richter's Concluding Observations (L&P'99) hep-ex/0001012
- a) Experimenters (and phenomenologists) need to be more concerned about systematic errors and the tails on error-distribution functions.
- b) Experimenters should learn more theory.
- c) All theorists should have a required course in statistics before receiving their Ph.D.

5. Summary

- Discovery first !
- LHC is capable to find new particles (SUSY, ED, Z' etc.) up to 3-4 TeV (up to ~10TeV with interference effect).
- Model discrimination / parametre determination under study.
- Experimental issues: commissioning/calibration
- Needs to understand SM bkg from data and tuned MC.
- Tools: t, b, W/Z and even Higgs!
- We do hope major breakthrough in HEP (SUSY, ED etc.)
- Important decision in 2010 about HEP's future...

backup

ATLAS Trigger

General Physics Trigger Menu for $2{\cdot}10^{33} \rm cm^{-2} \rm s^{-1}$

L1 Selection	HLT Selection	Purpose (example)		
MU20	µ20i	$ttH,H\rightarrow 4l,qq\tau\tau$		
		W, Z, top, new physics		
2MU6	2µ10	H→41,Z		
	$2\mu 6$ +mass etc.	B physics		
EM25i	e25i	ttH,H \rightarrow 4l,qq $\tau\tau$		
		W, Z, top, new physics		
	$\gamma 60i$	$H \rightarrow \gamma \gamma$, new physics		
2EM15i	2e15i	$H\rightarrow 41,Z$		
	$2\gamma 20i$	$H \rightarrow \gamma \gamma$, new physics		
TAU60	$\tau 60$	charged Higgs to ν_{τ}		
J200	j400	QCD, new physics		
2J170	2j350	QCD, new physics ¹		
3J90	3j165	QCD, new physics		
4J65	4j110	QCD, new physics		
FWDJ	fwdj	?		
xE150	xE200	? 2		
E1000	E1000	?		
JE1000	jE1000	?		
MU10+EM15i	µ10+e15i	$H \rightarrow ZZ$, tt semilept.		
EM??+N·J	e??+N·J	low rate; thresholds +		
		jet multiplicity t.b.d.		
MU??+N-J	mu??+N·J	low rate; thresholds +		
		jet multiplicity t.b.d.		
EM20i+xE20-30	e20i+xE20-30	W→ev		
TAU25+xE30	τ35+xE45	MSSM H, new physics		
J50+xE60	j70+xE70	SUSY		
Prescaled,				
Technical,				
Monitoring				

Prescaled Trigger Menu for $2{\cdot}10^{33} \rm cm^{-2} \rm s^{-1}$

Type	HLT Selection					
Muon	µ5/6/10/15					
	$\mu 20$ loose cuts					
Electron	e7/10/15/20i					
	e25 loose cuts					
	e25					
Photon	γ ⁷ /10/15/20i					
	γ30i					
	γ40i					
	$\gamma 60(i)$					
Tau	$\tau 25/35/45$					
	τ 60 loose cuts					
Jet	j25/35/50/65/90/130/170/300					
	2j25/35/50/65/90/130/170					
	3j25/35/50/65/75/90					
	4j25/35/50/65/80					
	fwd jets?					
(Missing) Energy	xE45/70/90/120/160					
	E400/600/800					
	jE400/600/800					
Mixed	e?+τ?					
	μ ?+ τ ?					
	e20+xE20-30 loose cuts					
$\tau 25 + xE30$ loose cuts						
	j70+xE70 loose cuts					
	J25+XE45					
](+XE45 -					
	J25+AE:					
Technical	Calibration: 1-3 item (3 assumed) Bandom triggers: 1 prescaled					
	proscaled BCID trigger filled/uppaired/ampty: 2 items					
	11 Additional items for roman pots Lucid beam pickups. ZDC					
	11 requirements for romain pore, factor, beam pickupe, hDC.					

¹ Thresholds to be properly defined.

² Threshold indicative.

LHC Upgrades

CERN Council Strategy Group Open Symposium 2006 January 30 - February 1, 2006 (*LAL - Orsay, France*)

http://events.lal.in2p3.fr/conferences/Symposium06/

Luminosity
Upgrade
(SLHC)

towards L=10³⁵cm⁻²s⁻¹

<u>Physics</u> 20-30% increase in discovery potential Better stat. precsion

P.Raimondi

parameter	symbol	nominal	ultimate	shorter bunch	longer bunch	
no of bunches	n _b	2808	2808	5616	936	
proton per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	6.0	
bunch spacing	∆t _{sep} [ns]	25	25	12.5	75	
average current	I [A]	0.58	0.86	1.72	1.0	
normalized emittance	ε _n [μm]	3.75	3.75	3.75	3.75	
longit. profile		Gaussia n	Gaussian	Gaussian	flat	
rms bunch length	σ _z [cm]	7.55	7.55	3.78	14.4	
ß* at IP1&IP5	ß* [m]	0.55	0.50	0.25	0.25	
full crossing angle	θ _c [µrad]	285	315	445	430	
Piwinski parameter	$\theta_{c} \sigma_{z} / (2\sigma^{*})$	0.64	0.75	0.75 0.75		
peak luminosity	L [10 ³⁴ cm ⁻ ² s ⁻¹]	1.0	2.3	9.2	8.9	
events per crossing		19	44	88	510	
luminous region length	σ _{lum} [mm]	44.9	42.8	21.8	36.2	

LHC Luminosity Upgrade: tentative milestones

accelerator	WorkPackage	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	after 2015
LHC Main Ring	Accelerator Physics											
	High Field Superconductors											
	High Field Magnets											
	Magnetic Measurements											
	Cryostats											
	Cryogenics: IR magnets & RF											
	RF and feedback											
	Collimation & Machine Protection											
	Beam Instrumentation											
	Power converters											
SPS	SPS kickers											
	Tentative Milestones	Beam-beam compensation test at RHIC	SPS crystal collim ation test	LHC collimation tests	LHC collimation tests	Install phase 2 collimation	LHC tests: collimation & beam-beam			Install new SPS kickers	new IR magnets and RF system	
	Other Tentative Milestones	Crab cavity test at KEKB	Low-noise crab cavity test at RHIC	LHC Upgrade Conceptual Design Report		LHC Upgrade Technical Design Report	Nominal LHC luminosity 10^34			Ultimate LHC luminosity 2.3x10^34	beam-beam compensation	Doubleultimate LHC luminosity 4.6x10^34

Reference Design Report

R&D - scenarios & models	
specifications & prototypes	
construction & testing	
installation & commissioning	

Reference LHC Upgrade scenario: peak luminosity 4.6x10^34/(cm^2 sec) Integrated luminosity 3 xnominal ~ 200/(fb*year) assuming 10 h turnaround time new superconducting IR magnets for beta*=0.25 m

 $phase \, 2 \, collimation \, and \, new \, SPS \, kickers \, needed \, to \, attain \, ultimate \, LHC \, beam \, intensity of 0.86 \, A$

beam-beam compensation may be necessary to attain or exceed ultimate performance

new superconducting RF system: for bunch shortening or Crab cavities

hardware for nominal LHC performance (cryogenics, dilution kickers, etc) not considered as LHC upgrade

R&D for further luminosity upgrade (intensity beyond ultimate) is recommended: see Injectors Upgrade

LHC Energy Upgrade (DLHC)

- $E_b=7 \text{ TeV} \rightarrow 14 \text{ TeV}$
- Physics Motivation Eur.Phys.J c39 (2005) 293-333
 - Higgs self-coupling ~ λ_{HHH} determination with 20-30% accuracy

unprecedented dipole field

- > 17 Tesla
- Conductor options;
 NbTi, Nb₃Sn, Nb₃AI(KEK)
- ←15-20 year program ?

