













# Light output of inorganic crystals shows strong temperature dependence







## Properties of some inorganic scintillators

| scintillator<br>composition                     | density<br>(g/cm <sup>3</sup> ) | index of refraction     | wavelength of<br>maximum<br>emission<br>(nm) | decay time<br>constant<br>(μs) | scintillation<br>pulse height <sup>1)</sup> | notes | Photons/<br>MeV                                           |
|-------------------------------------------------|---------------------------------|-------------------------|----------------------------------------------|--------------------------------|---------------------------------------------|-------|-----------------------------------------------------------|
| Nal                                             | 3.67                            | 1.78                    | 303                                          | 0.06                           | 190                                         | 2)    |                                                           |
| Nal(Tl)                                         | 3.67                            | 1.85                    | 410                                          | 0.25                           | 100                                         | 3)    | 4 × 104                                                   |
| CsI                                             | 4.51                            | 1.80                    | 310                                          | 0.01                           | 6                                           | 3)    |                                                           |
| CsI(Tl)                                         | 4.51                            | 1.80                    | 565                                          | 1.0                            | 45                                          | 3)    | 1.1 × 10⁴                                                 |
| CaI(Na)                                         | 4.51                            | 1.84                    | 420                                          | 0.63                           | 85                                          | 3)    |                                                           |
| KI(Tl)                                          | 3.13                            | 1.71                    | 410                                          | 0.24/2.5                       | 24                                          | 3)    |                                                           |
| <sup>6</sup> LiI(Eu)                            | 4.06                            | 1.96                    | 470-485                                      | 1.4                            | 35                                          | 3)    | 1.4×10 <sup>4</sup>                                       |
| CaF <sub>2</sub> (Eu)                           | 3.19                            | 1.44                    | 435                                          | 0.9                            | 50                                          |       |                                                           |
| BaF <sub>2</sub>                                | 4.88                            | 1.49                    | 190/220<br>310                               | 0.0006<br>0.63                 | 5<br>15                                     |       | $\begin{array}{c} 6.5\times10^3\\ 2\times10^3\end{array}$ |
| Bi <sub>4</sub> Ge <sub>3</sub> O <sub>12</sub> | 7.13                            | 2.15                    | 480                                          | 0.30                           | 10                                          |       | $2.8 \times 10^{3}$                                       |
| CaWO <sub>4</sub>                               | 6.12                            | 1.92                    | 430                                          | 0.5/20                         | 50                                          |       |                                                           |
| ZnWO <sub>4</sub>                               | 7.87                            | 2.2                     | 480                                          | 5.0                            | 26                                          |       |                                                           |
| CdWO <sub>4</sub>                               | 7.90                            | 2.3                     | 540                                          | 5.0                            | 40                                          |       |                                                           |
| CsF                                             | 4.65                            | 1.48                    | 390                                          | 0.005                          | 5                                           | 3)    |                                                           |
| CeF <sub>3</sub>                                | 6.16                            | 1.68                    | 300<br>340                                   | 0.005<br>0.020                 | 5                                           |       |                                                           |
| ZnS(Ag)                                         | 4.09                            | 2.35                    | 450                                          | 0.2                            | 150                                         | 4)    | 1                                                         |
| GSO                                             | 6.71                            | 1.9                     | 440                                          | 0.060                          | 20                                          |       |                                                           |
| ZnO(Ga)                                         | 5.61                            | 2.02                    | 385                                          | 0.0004                         | 40                                          | 4)    |                                                           |
| YSO                                             | 4.45                            | 1.8                     | 420                                          | 0.035                          | 50                                          |       |                                                           |
| YAP                                             | 5.50                            | 1.9                     | 370                                          | 0.030                          | 40                                          |       |                                                           |
| <sup>1)</sup> relative to Na                    | aI(Tl) <sup>2)</sup> at 80      | K <sup>3)</sup> hygroso | copic <sup>4)</sup> polycrystall             | ine                            |                                             |       |                                                           |
| PbWO₄                                           | 8.28                            | 1.82                    | 440, 530                                     | 0.01                           |                                             |       | 100                                                       |
| 7                                               |                                 | I                       | 1 · · ·                                      | 1                              |                                             |       | I                                                         |
| LAr                                             | 1.4                             | 1.29 <sup>5)</sup>      | 120-170                                      | 0.005 / 0.860                  |                                             |       |                                                           |
| LKr                                             | 2.41                            | 1.40 <sup>5)</sup>      | 120-170                                      | 0.002 / 0.085                  |                                             |       |                                                           |
| LXe                                             | 3.06                            | 1.60 <sup>5)</sup>      | 120-170                                      | 0.003 / 0.022                  |                                             |       | $4 \times 10^4$                                           |
|                                                 |                                 | <sup>5)</sup> at 170    | nm                                           |                                |                                             |       |                                                           |

#### Table A6.2 Properties of some inorganic scintillators

CERN Summer Student Lectures 2002 Particle Detectors





#### **Organic scintillators (backup)**



Primary Secondary Polystyrene Final fluor fluor fluor **Schematic** representation emissions of wave length shifting principle absorptions (C. Zorn, Instrumentation In High Energy Physics, World Scientific, 1992) 600 200 300 400 500 wavelength (nm)

### Some widely used solvents and solutes

|               | solvent          | secondary   | tertiary |
|---------------|------------------|-------------|----------|
|               |                  | fluor       | fluor    |
| Liquid        | Benzene          | p-terphenyl | POPOP    |
| scintillators | Toluene          | DPO         | BBO      |
|               | Xylene           | PBD         | BPO      |
| Plastic       | Polyvinylbenzene | p-terphenyl | POPOP    |
| scintillators | Polyvinyltoluene | DPO         | TBP      |
|               | Polystyrene      | PBD         | BBO      |
|               |                  |             | DPS      |

After mixing the components together plastic scintillators are produced by a complex polymerization method.

Some inorganic scintillators are dissolved in PMMA and polymerized (plexiglas).





| scintillator           | density<br>(g/cm <sup>3</sup> ) | index of<br>refraction | wavelength of<br>maximum<br>emission<br>(nm) | decay time<br>constant<br>(ns) | scintillation<br>pulse height <sup>1)</sup> | H/C<br>ratio <sup>2)</sup> | yield/<br>NaI |
|------------------------|---------------------------------|------------------------|----------------------------------------------|--------------------------------|---------------------------------------------|----------------------------|---------------|
| Monocrystals           |                                 |                        |                                              |                                |                                             |                            |               |
| naphthalene            | 1.15                            | 1.58                   | 348                                          | 11                             | 11                                          | 0.800                      |               |
| anthracene             | 1.25                            | 1.59                   | 448                                          | 30-32                          | 100                                         | 0.714                      | 0.5           |
| trans-stilbene         | 1.16                            | 1.58                   | 384                                          | 3-8                            | 46                                          | 0.857                      |               |
| p-terphenyl            | 1.23                            |                        | 391                                          | 6-12                           | 30                                          | 0.778                      |               |
| Plastics <sup>3)</sup> |                                 |                        |                                              |                                |                                             |                            |               |
| NE 102 A               | 1.032                           | 1.58                   | 425                                          | 2.5                            | 65                                          | 1.105                      |               |
| NE 104                 | 1.032                           | 1.58                   | 405                                          | 1.8                            | 68                                          | 1.100                      |               |
| NE 110                 | 1.032                           | 1.58                   | 437                                          | 3.3                            | 60                                          | 1.105                      |               |
| NE 111                 | 1.032                           | 1.58                   | 370                                          | 1.7                            | 55                                          | 1.096                      |               |
| Plastics <sup>4)</sup> |                                 |                        |                                              |                                |                                             |                            |               |
| BC-400                 | 1.032                           | 1.581                  | 423                                          | 2.4                            | 65                                          | 1.103                      |               |
| BC-404                 | 1.032                           | 1.58                   | 408                                          | 1.8                            | 68                                          | 1.107                      |               |
| BC-408                 | 1.032                           | 1.58                   | 425                                          | 2.1                            | 64                                          | 1.104                      |               |
| BC-412                 | 1.032                           | 1.58                   | 434                                          | 3.3                            | 60                                          | 1.104                      |               |
| BC-414                 | 1.032                           | 1.58                   | 392                                          | 1.8                            | 68                                          | 1.110                      |               |
| BC-416                 | 1.032                           | 1.58                   | 434                                          | 4.0                            | 50                                          | 1.110                      |               |
| BC-418                 | 1.032                           | 1.58                   | 391                                          | 1.4                            | 67                                          | 1.100                      |               |
| BC-420                 | 1.032                           | 1.58                   | 391                                          | 1.5                            | 64                                          | 1.100                      |               |
| BC-422                 | 1.032                           | 1.58                   | 370                                          | 1.6                            | 55                                          | 1.102                      |               |
| BC-422Q                | 1.032                           | 1.58                   | 370                                          | 0.7                            | 11                                          | 1.102                      |               |
| BC-428                 | 1.032                           | 1.58                   | 480                                          | 12.5                           | 50                                          | 1.103                      |               |
| BC-430                 | 1.032                           | 1.58                   | 580                                          | 16.8                           | 45                                          | 1.108                      |               |
| BC-434                 | 1.049                           | 1.58                   | 425                                          | 2.2                            | 60                                          | 0.995                      |               |

#### Table A6.3 Properties of some organic scintillators

<sup>1)</sup> relative to anthracene

<sup>2)</sup> ratio of hydrogen to carbon atoms

<sup>3)</sup> Nuclear Enterprises Ltd. Sighthill, Edinburgh, U.K.

<sup>4)</sup> Bicron Corporation, Newbury, Ohio, USA

Organic scintillators have low Z (H,C). Low  $\gamma$  detection efficiency (practically only Compton effect). But high neutron detection efficiency via (n,p) reactions.





# Scintillator readout Readout has to be adapted to geometry and emission spectrum of scintillator. Geometrical adaptation: Light guides: transfer by total internal reflection (+outer reflector) Light guide РМ Scintillator РМТ Ē Light guide "fish tail" adiabatic wavelength shifter (WLS) bars WLS green small air gap 🔍 🗹 Photo detector blue (secondary) UV (primary) scintillator primary particle

CERN Summer Student Lectures 2002 Particle Detectors





CERN Summer Student Lectures 2002 Particle Detectors







Charged particle passing through a stack of scintillating fibers (diam. 1mm)



(H. Leutz, NIM A 364 (1995) 422)

Hexagonal

fibers with

Only central

double cladding.

fiber illuminated.

Low cross talk !











CERN Summer Student Lectures 2002 Particle Detectors





## Energy resolution of PMT's

The energy resolution is determined mainly by the fluctuation of the number of secondary electrons emitted from the dynodes.

Poisson distribution:  $P(\overline{n},m) = \frac{\overline{n}^m e^{-m}}{m!}$ Relative fluctuation:  $\frac{s_n}{\overline{n}} = \frac{\sqrt{\overline{n}}}{\overline{n}} = \frac{1}{\sqrt{\overline{n}}}$ 







(d)



## Dynode configurations



(c)



(Philips Photonics)

Dynode configurations: (a) venetian blind, (b) box, (c) linear focusing, (d) circular cage, (e) mesh and (f) foil



### Multi Anode PM

#### example: Hamamatsu R5900 series.



Up to 8x8 channels. Size: 28x28 mm<sup>2</sup>. Active area 18x18 mm<sup>2</sup> (41%). Bialkali PC: Q.E. = 20% at  $\lambda_{max}$  = 400 nm. Gain  $\approx 10^6$ 

# Gain uniformity and cross-talk used to be problematic, but recently much improved.

CERN Summer Student Lectures 2002 Particle Detectors



CERN Summer Student Lectures 2002 Particle Detectors



#### **Photo Detectors**





CERN Summer Student Lectures 2002 Particle Detectors













